首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以制冷剂R141b为实验工质,在截面尺寸为1 mm×2 mm,壁面接触角分别为67°、0°和156°的普通亲水、超亲水及超疏水矩形微细通道进行流动沸腾实验,并对3种表面微细通道沿程测点压力进行对比,分析极端润湿性(超亲水和超疏水)微细通道内R141b的流动沸腾压降特性.研究结果表明:极端润湿性微细通道内各压降分量比例和普通亲水微细通道大致相同,单位长度两相摩擦压降均随着质量通量、入口温度和热流密度的增大而增大;超疏水表面微细通道进出口总压降最大,是超亲水表面的1.08~1.17倍,且在单相流动区域内的沿程测点压力曲线斜率最小,两相流动区域内的沿程测点压力曲线斜率最大;引入壁面表面能参数λ_s对Qu-Mudawar模型进行修正,能更好地预测实验值,平均绝对误差为10.7%.  相似文献   

2.
提出一种壁面为正弦波形结构的微通道,应用VOF模型和用户自定义函数,着重对波形微通道内的流动沸腾换热过程进行数值模拟.对比波形微通道和平直微通道内的汽泡变化、流动沸腾换热效果和可靠性的差异,分析波形结构对微通道流动沸腾换热的影响.对比发现:波形结构可以促进汽泡脱离受热壁面,维持核态沸腾,避免局部干涸,保证汽液两相流动的可靠性.研究结果表明:增大波幅和减小波距均可强化波形微通道的沸腾换热;波幅扩大到4倍(从20μm增加到80μm),沸腾换热系数提高26.5%,流动阻力升高24.0%;波距缩小到1/4(由2.0 mm减少到0.5 mm),沸腾换热系数提高16.0%,流动阻力升高40.0%;波幅对沸腾换热系数的影响较大,而波距对流动阻力的影响较大,但过大的波幅和过小的波距会引起局部干涸,造成传热恶化,不利于可靠传热.  相似文献   

3.
为了探讨壁面浸润性与流体初始密度对气泡核化位置以及纳米气泡在凹槽内生长核化影响规律,本文采用分子动力学方法研究纳米结构微通道内液体氩的沸腾核化过程。通过改变固液势能的相互作用参数来调整壁面浸润性。结果表明:纳米凹槽壁面浸润性对气泡核化过程具有重要的影响。一方面,当固体表面的浸润性较弱时,凹槽内流体受排斥力的作用,原子排布比较稀疏,原子碰撞频率增大,局部活化能聚集,从而导致气泡在纳米凹槽内形成。另一方面,当壁面浸润性较强时,气泡会在微通道中央形成。此外,区别于均质浸润性纳米凹槽内气泡曲率半径及接触角保持不变的核化动力学行为,其在异质亲疏水匹配的纳米结构微通道内产生了显著的差异。当壁面浸润性维持不变,核化气泡的曲率半径随着流体初始密度增大而增大,与之相反,稳态接触角却随之减小。  相似文献   

4.
为了探究微细通道内表面活性剂对纳米流体制冷剂Al_2O_3/R141b流动沸腾传热的影响,采用二步法制备了添加0.2%(质量分数,余同)SDBS、0.3%SDBS、0.3%CTAB、0.4%CTAB、0.1%Span80、0.2%Span80的改性纳米流体制冷剂与0.1%Al_2O_3/R141b纯纳米流体制冷剂共7种实验工质.设计系统压力为170 kPa、热流密度为9.4~33.5 kW/m~2、质量流率为219.9~439.8 kg/(m~2·s),在高、宽分别为2.0、1.0 mm的矩形截面微细通道内进行流动沸腾传热实验.研究结果表明:表面活性剂对纳米流体制冷剂饱和沸腾区的流动沸腾传热系数影响十分显著;在选用的热流密度及质量流率范围内,采用前述6种添加了表面活性剂的纳米流体制冷剂时,饱和沸腾区平均传热系数较采用纯纳米流体制冷剂时分别提升27.7%、17.9%、13.8%、8.9%、7.9%、5.3%;表面活性剂强化因子SEF随质量流率的变化规律不明显,在同一质量流率下SEF随着热流密度的增大而减小,其中阴离子型表面活性剂SDBS对纳米流体流动沸腾传热的效果最好,阳离子型表面活性剂CTAB次之,非离子型表面活性剂Span80最差.  相似文献   

5.
针对Ω型凹槽微通道内流动沸腾,运用VOF(volume of fluid)模型和用户自定义函数,对微通道内发生的一系列汽泡行为进行了数值模拟.结合Ω型凹槽微通道内汽泡成核生长、聚并、脱离的动态演变过程,分析Ω型凹槽微通道流动沸腾换热的特点.结果表明:与平直微通道相比,Ω型凹槽微通道内的汽泡行为较为不同,汽泡脱离周期缩短,主流区温度降低,汽泡与受热壁面之间存在液体薄层,有助于提升流动沸腾换热的稳定性、可靠性;不同的凹槽结构(凹槽深度H、凹腔直径D)强化传热效果不同;H=50μm,D=80μm的Ω型凹槽微通道,其换热系数最高;H=30μm,D=50μm的凹槽微通道则对应最低的换热系数;凹腔直径对微通道内的压降影响较为明显,较大的凹腔直径对应较高的压力损失.  相似文献   

6.
本文提出过冷核态池沸腾热传递的分形模型,根据加热表面活化点的分形分布得到了过冷核态池沸腾热流密度的表达式.从该模型中发现过冷流动沸腾热流密度是壁面过热度、流体的过冷度、流体的接触角与流体物理特性的函数关系,并且没有增加新的经验常数.对不同的过冷度,模型预测的结果与实验数据进行了比较,两者是极好的吻合.  相似文献   

7.
扩缩通道内流动和换热非线性特性的数值模拟   总被引:2,自引:2,他引:0  
对扩缩通道内流动与换热进行了数值模拟并探讨了其中的非线性特性.通过对不同突扩比ER、不同长宽比AR及不同雷诺数Re下通道内流场和温度场进行分析,给出在一定工况下对称通道内流体的流动和换热会出现偏斜等非线性现象的情况.数值模拟结果表明,存在临界雷诺数Rec使流体流动和换热形态发生转变,当Re超过Rec时,流体流动和换热不仅有对称解,还有非对称解;当Re继续增大时,流体流动和换热出现振荡.通道的几何尺寸及后缩段(表现为ER及AR)都对Rec产生影响.分析结果表明,当Re超过临界雷诺数Rec时,同一截面处上下壁面的局部努塞尔数Nu也由对称向非对称转变,上下壁面出现最大局部Nu的位置也不同.  相似文献   

8.
为了得到非清洁水换热管内振荡流动的除垢性能,研究了有无振荡干预下非清洁水源热泵换热器管内的流动和传热情况。建立恒热流条件下圆管内振荡流动的物理模型,针对不同工况进行数值模拟。模拟结果显示,振荡流动能够明显增大流体对于壁面的剪切力,在5Hz和10Hz情况下能够增大流体和壁面间的平均表面换热系数,1Hz情况下平均表面换热系数变化不明显。在1Hz实验工况下搭建了试验台进行实验研究,实验结果表明,实验工况条件下,振荡对于换热器管内表面换热系数的影响较小,但是剪切力的增大造成部分污垢沉积物脱落,减小了污垢热阻从而使换热器的传热系数增加了22.2%,因此振荡可以作为换热管内除垢的一种有效方式。  相似文献   

9.
研究表明微通道的截面形状、尺寸以及数量显著影响流体在通道中的传热性能。基于热阻网络模型和计算流体力学(CFD,computational fluid dynamics)模拟,对适用于流动沸腾散热的铜基微通道设计进行了热性能分析。根据实验和模拟计算结果,在确保微通道内热边界层发展区满足恒定壁温条件下,8个平行的尺寸为200μm高,800μm宽,10 mm长的铜基微通道阵列即可满足一般的流动沸腾应用所需要的对流散热量(如6 kW/m~2)。该微通道热沉设计可以在30 min内达到稳定,也可以在相对较短的时间内将目标系统维持在稳定的合理工作温度。此外,实验结果表明在微通道入口处的流体冲击流动可以提高微通道壁面与工作流体之间的对流换热系数,并且在很大程度上降低了壁温。  相似文献   

10.
针对微通道换热器强化沸腾换热,提出分段式梯形换热结构,该结构可实现气泡在表面张力驱动下间断性流向通道两侧,保持中间加热区为液体,实现气液分相流动,进而强化沸腾换热性能。采用无水乙醇为工质,实验研究直肋和梯形结构铜基表面在热流密度为160~320 kW/m2和工质流量为0.4~2.0 g/s时壁温、换热系数等参数变化规律。结果表明:在饱和沸腾区,梯形分相结构可有效实现气液分离,进而降低壁面温度,大幅提高换热系数;如在25 mm位置处,5段结构换热系数比平行结构换热系数提高了60.4%;在单相加热区,换热面积为主要影响因素,直肋结构换热系数略大,但换热系数比饱和沸腾时小一个数量级。平均换热系数分析得到5段结构微通道比平行结构微通道提高了53.8%,可见分段式结构可实现气液分相流动,有效提高沸腾换热的平均换热系数,增强整体换热能力。  相似文献   

11.
传统的直壁管式换热器的换热效率不高,为了增强换热器内流体的换热效率。采用数值模拟的方法对<1-2>型波壁管式换热器内流体的流动与换热特性进行了研究,重点探讨了雷诺数Re与波壁管半径比i对换热器内流体的流动特性、阻力特性、换热特性以及综合换热性能的影响。结果发现,与直壁管式换热器相比,波壁管式换热器内流体的流动状态能够得到较大的改善。波壁管式换热器壳程流体的进出口平均压降比直壁管式换热器低,平均压降最大可降低11.01%,并且发现随着Re的增加,平均压降明显增大,随着i的增加,平均压降略有增大。波壁管式换热器壳程内流体的对流换热系数hs明显大于直壁管式换热器,hs最大可增加14.17%。hs随着Re的增大逐渐增加,而i对hs的影响不明显。同时发现波壁管式换热器的综合换热性能与雷诺数Re成正相关,而与半径比i成负相关。与直壁管式换热器相比,波壁管式换热器的综合换热性能更强。  相似文献   

12.
波纹通道形状对流动与换热影响的数值研究   总被引:1,自引:0,他引:1  
应用数值方法,研究了流体在结构对称的正弦形、三角形、椭圆形、圆弧切线形及阶梯形通道内周期性充分发展的层流流动与换热特性,分析了恒壁温、常物性条件下通道表面形状,以及雷诺数RP对流动与换热性能的影响;并对不同通道的摩擦阻力系数f、表征换热特征的努谢尔特数Nu以及综合性能参数G分别进行了比较.结果表明:阶梯形通道内流体流动的f最大,正弦形通道的次之,椭圆形通道的f随Re的变化规律与其他通道的不尽相同;不同结构通道表面Nu的相对大小与Re的范围相关,Re>150后,阶梯形通道的换热能力最强,椭圆的最弱;三角形通道的综合性能最佳,椭圆形通道的最差,除阶梯形通道外,小Re时通道的综合性能优于大Re时的性能.本研究成果为换热器设计提供理论依据.  相似文献   

13.
随着电子器件的集成化和小型化,其散热量超过10 MW/m2将成为现实,这超出了目前大功率系统中使用的单相冷却方案的上限,所以必须再次开发新的冷却方案.克服单相传热局限性的一种方法是转变为两相沸腾传热,而临界热流密度又是所有沸腾传热的上限值.因此,为了提高微通道内流动沸腾传热的临界热流密度,本文设计开发了非均匀导热性传热板.通过将两种不同导热性能的材料(铜和聚四氟乙烯)交替布置在靠近传热表面的传热板内,实现了传热表面的非均匀温度分布和异态相干沸腾模式(核态沸腾与膜态沸腾共存且相互干涉的状态).同时搭建了微通道流动沸腾实验系统,其微通道截面尺寸为1.84 mm×70.00 mm,通道长度为280.0 mm,传热板表面尺寸为10.0 mm×10.0 mm,流体工质为去离子水.在不同入口流速v=0.1 m/s、0.2 m/s、0.4 m/s和不同过冷度DTsub=10.0 K、20.0 K、30.0 K条件下,研究了非均匀导热性传热板在微通道流动沸腾中的传热强化效果.结果表明,相对于单纯的核态沸腾状态,异态相干沸腾状态能够有效地提升流动沸腾传热的临界...  相似文献   

14.
液氮在狭缝通道内受迫流动沸腾换热的实验研究   总被引:7,自引:1,他引:6  
对液氮在0.5-1.5mm狭缝通道内受迫流动沸腾换热的情况进行了研究,实验结果表明:液氮在弦月形猴缝通道中的受迫流动沸腾换热系数是传统大直径光管池沸腾的3-5倍,与热虹吸狭缝通道内沸腾传热相比,当热流密度高于10kW/m2时,受迫流动沸腾在换热温差和换热系数两方面有明显优势,液氮受迫流动沸腾换热系数随质量流速的增加而增加,随热流密度增加的趋势更为显著,狭缝间隙尺寸减少,换热效果增强,弦月形通道与环缝通道相比,在相同的条件下,弦月形通道显示更好的换热效果。  相似文献   

15.
分别以0、0.031%、0.062%、0.155%、0.248%浓度的Al_2O_3-R141b纳米制冷剂为工质,在水力直径为1.33 mm的矩形铝基微细通道内进行了流动沸腾实验,研究了不同浓度纳米制冷剂实验后槽道表面能的变化情况.结果表明:加入少量纳米颗粒后,壁面形成大量的活化核心,使得沸腾起始点ONB提前,强化了传热;浓度为0.062%纳米制冷剂的强化传热效果最好,传热系数比纯制冷剂最大可提高48.1%;当纳米颗粒浓度超过最佳浓度而继续增大时,颗粒在表面沉积现象越来越严重,使槽道表面能增大,换热热阻也随之增大,强化传热效果反而依次降低.浓度为0.031%、0.062%、0.155%、0.248%纳米制冷剂实验后的槽道表面能,比槽道原始表面能分别增长了0.47、1.39、1.89、2.14倍.  相似文献   

16.
在依靠自然循环驱动的小型模块化反应堆主回路以及反应堆非能动安全系统中,冷凝换热是热交换过程的重要一环,因此对冷凝换热过程的深入研究和分析对提升换热效率、保障堆芯安全至关重要。该文基于格子Boltzmann方法,采用伪势模型,模拟研究了二维通道内静止饱和蒸汽在凝结过程中的流动和换热特性。结果表明:蒸汽冷凝会自发驱动蒸汽流动,蒸汽质量流速与通道宽度和凝结过程中的热流流量有关,保持壁面温度和通道宽度恒定状态下,液膜发展阶段壁面热流较大时,蒸汽质量流速增长较快;通道较窄时,入口处蒸汽平均质量流速初期增速较快但迅速达到稳态,通道宽度为150时的稳态入口平均质量流速约是通道宽度为500时的80.0%。对接触角的分析表明:亲水壁面上的液膜厚度受壁面亲水程度影响较小,壁面接触角为51°时出口处液膜厚度与接触角为72°时的相等。普通疏水壁面上珠状凝结难以维持,被液膜覆盖后相较于亲水壁面传热速率较慢,液膜滑移出计算域之前,壁面接触角为127°时壁面平均热流密度最大值约是接触角为51°时的75.8%,并随液膜滑移逐渐降低,但液膜受重力去除后再形成的过程能在一定范围内强化传热速率。  相似文献   

17.
为深入研究核电蒸汽发生器二回路侧汽液两相的沸腾传热和流动特性,采用RPI模型对过冷沸腾区域壁面的热流分配进行划分,以此修正CFD程序中的两流体模型,并利用文献中的实验结果验证了修正后模型的适定性.最后以大亚湾压水堆核电站为例,采用该模型对蒸汽发生器内二回路预热段单元通道内的过冷沸腾进行计算,获得了通道内流体空泡份额、速度、温度、热流量分配等的分布情况.  相似文献   

18.
以宽度为1.0 mm和0.1 mm的竖直矩形细通道内的沸腾换热特性为研究对象,运用数值模拟的方法探索气泡生成、长大和脱离的过程,通过几何重构和界面追踪的方法获取相界面移动和变化对系统内压差以及平均表面换热系数的影响。计算中考虑重力、表面张力和壁面黏性的作用。研究结果表明:通道宽度的不同对气泡生长方式和气泡形态产生很大影响,且核态沸腾换热系数随着细通道宽度的减小而增大;表面张力在细通道沸腾换热过程中所起的作用明显增大,证明细通道有强化换热的作用;由于数值计算中进行了理想化假设,导致数值模拟的沸腾传热系数比现有细通道沸腾传热实验传热系数普遍偏高。  相似文献   

19.
在微型燃气轮机高效紧凑式回热器关键技术研究背景下,对具有正弦形波纹通道的一次表面换热器开展了传热与流动的数值模拟,并重点针对换热器不同的流动交错角(θ)和宽高比(P/H)做了场协同问题的计算和分析.数值计算表明,场协同原理同样可以指导一次表面换热器的换热强化,并指明未来结构优化的方向.  相似文献   

20.
摘要: 在考虑固-液接触角影响的半理论沸腾换热模型的基础上,将沸腾换热特性表达为过热度、固-液接触角和物性参数的函数;通过图解法推导出考虑固-液接触角影响的沸腾换热特性的预测关系式;利用无壁面毛细力影响的平坦金属表面或金属表面镀膜加热面在不同饱和压力条件下的饱和水实验数据,获得了适用于不同饱和压力和  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号