首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 66 毫秒
1.
子集S(∩)V(G)称为限制割,若任何点v∈V(G)的邻点集NG(v)都不是S的子集且G-S不连通.若G中存在限制割,则定义限制连通度κ1(G)=min{| S|S是G的一个限制割}.考虑了笛卡尔乘积图,证明了设G=G1×G2×…×Gn,若Gi是满足某些给定条件的ki连通ki正则且围长至少为5的图,其中i=1,2,…,n,则κ1(G)=2n∑i=1ki-2.  相似文献   

2.
在图论中,图的连通性研究是一个较重要的方面,因为图的许多性质都与图的连通性有着密切的联系.李慰萱在其所著的《图论》一书中介绍了有向图的各种连通度,并且给出了有关强弧连通度λ_3与最小出入度δ_3的两个结论1.对任何有向图D,K_3≤λ_3≤δ_3.2.若D是一个强有向图,δ_3≥[p/2],则λ_3=δ_3.我们推广了上述第2个结论,得到了下面的结果:定理 若D是一个有P个顶点的有向图,记d_3(v)=min{odv,idv},如果存在整数k(1≤k≤4),使对D中任意k个顶点v_1,…,v_k都有d_3(v_1)+…+d_3(v_k)≥k/2(p-2)+1/2则λ_3=δ_3.  相似文献   

3.
王晓丽  王世英 《山东科学》2014,27(1):98-101
设D是一个有向图,δ(D)是最小度,弧连通度为λ(D),则λ(D)≤δ(D)。当λ(D)δ(D)时,称有向图D是非极大弧连通的。本文给出了非极大弧连通图的弧连通度的下界。  相似文献   

4.
限制边连通度是比传统的边连通度更精确的网络可靠性指标.限制边连通度在有向图中有4个推广,分别对应有向图的4种限制弧连通度.有向Kautz图可以作为多处理机系统的基础拓扑,是一类重要网络.证明了有向Kautz图K(d,n)的4种限制弧连通度都为2d-2,并且确定了对应的最小限制弧割的结构特征.  相似文献   

5.
有向图的弧连通度是网络可靠性的一个重要参数。设D是一个有向图,最小度为δ!D,弧连通度为λ!D,则λ!D≤δ!D。当λ!D<δ!D时,称有向图D是非极大弧连通的。  相似文献   

6.
设D是一个n阶强连通的有向图.D的逆度定义为,R(D)=∑v∈V(D)max{1/(d+(v)),1/(d-(v))},其中,d+(v)与d-(v)是v的出度和入度.证明了,如果R(D)<2+2/(δ(δ+1))+(n-2δ)/((n-δ-2)(n-δ-1)),其中,δ(D)=min{d+(v),d-(v),v∈V(D)},是最小度,那么,D是极大弧连通的.同时,给出了一个二部图的类似结果.  相似文献   

7.
有向图X的超弧连通性可以用严格弧连通度λ′(X)来表示,该文证明了在强连通弧对称的有向图类中,不是最优超弧连通的图只有有向图Cn。  相似文献   

8.
如果G-F不连通且每个连通分支至少含有两个顶点,则连通图G的边子集F称为限制边割.如果图G的每个最小限制边割都孤立G中的一条边,则称G是超限制边连通的(简称超λ′).对于满足|F|≤m的任意子集FE(G),超λ′图G的边容错性ρ′(G)是使得G-F仍是超λ′的最大整数m.这里给出了min{k1+k2-1,υ1k2-2k1-2k2+1,υ2k1-2k1-2k2+1}≤ρ′(G1×G2)≤k1+k2-1,其中,对每个i∈{1,2},Gi是阶为υi的ki正则ki边连通图且ki≥4,G1×G2是G1和G2的笛卡尔乘积.并给出了使得ρ′(G1×G2)=k1+k2-1的一些充分条件.  相似文献   

9.
研究了积图的点连通度,并给出了积图点连通度的一个新的下界:设Gm和Gp分别是构成积图Gm*Gp的主图与模型图,若Gm是一个有m个点的连通图,则κ(Gm*p)≥min{mκ(Gp),δ(Gp)+1}.  相似文献   

10.
主要研究了一些笛卡尔乘积图Km×Kn、K2×Cn、格子图Pn1×Pn2×…×Pnk及Tori图Cn1×Cn2×…×Cnk的邻域完整度.  相似文献   

11.
主要运用约化的方法证明了Peterson图与圈的卡氏积图是Z3-连通的.  相似文献   

12.
本文主要运用约化的方法证明了Flower snark Jk与Cm的卡式积图Jk×Cm是Z3-连通的。  相似文献   

13.
设G是一个极大限制边连通k-正则图,k≥2.论文证明了:如果│G│〉2k且n≥3,那么笛卡尔乘积图Pn×G是超级限制边连通的,除非G包含子图Kk;如果│G│〉k+1且n≥3,那么Cn×G是超级限制边连通的,除非n=3且G是圈.  相似文献   

14.
广义deBruijn有向图G1(n,d)的顶点集为(0,1,…,n-1)弧集为i→d(n-1-i)+r(modn),0≤i≤n-1,0≤r≤d-1,本文证明,如果G1(n,d)的直径不小于5,那么经的连通度等于d当且仅当g.c.d,(n,d)≥2,而且n能被d+1整除。  相似文献   

15.
设Gi是一个极大边连通的与Ki-正则图,且ki≥3,i=1,2,证明了:如果围长g(Gi)≥4,则其笛卡尔乘积图G1□G2是超级3-限制边连通的;同时提出了在特定条件下笛卡尔乘积图Gm□G和K2□G是超级3-限制边连通的充要条件。  相似文献   

16.
有向图常模拟互联网络.因此,对于网络的客错性,有向图的边连通度是一个重要的度量.文章用度序列给出了有向图的边连通度的新的下界.  相似文献   

17.
Cayley图的笛卡尔乘积   总被引:6,自引:0,他引:6  
Cayley图是由有限群导出的一类重要的高对称正则图,被认为是非常合适的互连网络拓扑结构。百笛卡尔乘积则是从小规模的指定网络构造大规模网络的重要构造方法。本文证明了Cayley图的笛卡尔乘积仍是Cayley图。作为实例,指明循环网络、超立方体、广义超立方体、超环面和立方连通圈等都是Cayley图。这样可以借助于代数方法来分析和研究这些网络的性质。  相似文献   

18.
网络中子图的可嵌入性是度量网络优劣的一个重要性能。圈作为网络拓扑中一类重要的子图,其可嵌入性可以通过泛圈性来度量。Cartesian积图是互联网络拓扑结构中一类非常重要的图类。设G是长为k1和k2的圈的Cartesian积图。利用Cartesian积图的顶点和边的传递性,证明了当k1≥3,k2≥3,G是边偶泛圈的;当k1,k2均为奇数时,G是(k1+k22)-边泛圈的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号