首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在通常的常微分方程教材中,(如文献[1]),只简单地介绍了求高阶常系数非齐次线性微分方程和Euler方程特解的比较系数,未作深入地讨论。本文也探讨这两类方程特解的求法,较系统地综述了有关文献的结论,改进和完善了比较系数法,简化了求解过程。  相似文献   

2.
本文通过变量代换,将常系数非齐次线性微分方程降阶和简化非齐次项,使之比较容易地求得该类方程的特解、该方法推广了一般的特定系数法,并给出了上机计算方法。  相似文献   

3.
利用逆微分算子及其线性性质,给出了求n阶常系数线性一般非齐次项微分方程特解公式。  相似文献   

4.
利用方程组系数矩阵的特征根,给出二元常系数非齐次线性微分方程组特解的一种求法。  相似文献   

5.
张喜文 《科技信息》2011,(8):I0114-I0114
常系数齐次线性微分方程存在与其等价的常系数齐次线性微分方程组,并且两者具有相同的特征多项式。  相似文献   

6.
本文对系数全为多项式和广义多项式的n阶线性齐次微分方程引入特征方程的概念。给出了具有指数型解的充要条件,推广了经典的常系数线性方程和著名的Euler方程的解法,为求解变系数线性微分方程提供了有效的方法。  相似文献   

7.
本文给出了对于微分方程y~((n))+p_1y~((n-1))+…+p_ny=Ae~(ax)(其中p_1,p_2,…p 是常数)在求特解 y~*=ax~ke~(ax)时,应用微分法来确定常数a的一种方法.  相似文献   

8.
对方程y"+ay′+by=f(x)给出了13种解法,旨在介绍二阶常系数线性非齐次微分方程的一些解题方法与思路.  相似文献   

9.
给出了常系数线性非齐次方程组dy/dt=Ay+e^atPm(t),有形如y=e^at(m+x)∑(i=0)cit^i的特解的一个严格证明。  相似文献   

10.
通过对二阶常系数非齐次线性微分方程的特解y的推导过程,探讨出一种求y的简化运算。  相似文献   

11.
通过分析,研究可以证明得到n阶常系数非齐次线性微分方程y(n)+p1y(n-1)+p2y(n-2)+…+pny=Pm(x)eλx的特解公式,特解公式与特征方程紧密相连,能达到简化其特解的求解过程.  相似文献   

12.
二阶常系数线性非齐次微分方程的通解   总被引:1,自引:0,他引:1  
在已知二阶常系数齐次微分方程y″+py’+gy=0的一个特解的条件下,讨论了求二阶常系数线性非齐次微分方程y″+py’+qy=f(x)的一个特解的方法,从而根据齐次方程的特征根的不同情形给出了非齐次微分方程的通解公式.  相似文献   

13.
把常系数齐次线性微分方程施以变换y=zerx所得的方程写成复合微分方程,再转化为非齐次微分方程,用待定系数法或数学归纳法,导出了常系数齐次线性微分方程的通解是它的两个特定的互补子方程的通解的和,从而进一步导出这类微分方程的通解  相似文献   

14.
文章利用高阶常系数线性微分方程与一阶常系数线性微分方程组之间的关系,引入向量的内积,运用其运算性质,从而得到了求解高阶常系数线性微分方程的新公式.最后通过实例,说明了这个新公式可以普遍地应用于高阶常系数线性微分方程的求解.  相似文献   

15.
求二阶线性常系数非齐次微分方程通解的一种新方法   总被引:1,自引:0,他引:1  
为了更多地得到理论上和应用上占有重要地位的二阶常系数线性非齐次微分方程的通解,这里使用常数变易法,在先求得二阶常系数线性齐次微分方程一个特解的情况下,将二阶常系数线性非齐次微分方程转化为可降阶的微分方程,从而给出了一种运算量较小的二阶常系数线性非齐次微分方程通解的一般公式,并且将通解公式进行了推广,实例证明该方法是可行的.  相似文献   

16.
求二阶常系数线性非齐次微分方程特解通常是采用待定系数法,计算量很大。本文在不脱离教材特解的求法,利用推导特解过程中出现的重要式子Q″(x)+(2λ+p)Q’(x)+(λ2+pλ+q)Q(x)=Pm(x),简化待定系数法求特解的过程。对右端非齐次项eλx[Pl(x)cosωx+Pn(x)sinωx]是先设变换,化简右端非齐次项。  相似文献   

17.
高阶常系数非齐次线性微分方程y(n)+an-1y(n-1)+…+a1y(1)+a0y=f(x),(a0,a1,…,a n+1∈R),文章将讨论一种将此高阶方程化为a个一阶非齐次线性微分方程组的解法来简化解题过程,并介绍了一种求一类高阶常系数线性微分方程特解的比较简单的方法.  相似文献   

18.
《河南科学》2017,(5):673-677
对于二元一阶常系数线性微分方程组:x′=Ax+f(t),引入特征根方程|A-λE|=0的特征行向量K=(k_1,k_2)(其中K满足:K~T(A-λE)=0)概念,将二元一阶常系数线性微分方程组,化为二元一次代数线性方程:k_1x_1+k_2x_2=C_1e~(λt)+e~(λt)∫(k_1f_1+k_2f_2)e~(-λt)dt,并结合代数线性方程和一阶线性微分方程的理论,给出原微分方程组的解.  相似文献   

19.
通过严谨的数学推导,利用待定系数法,对于一阶常系数非奇次线性微分方程y′+py=Q(x),给出了Q(x)的不同情况的特解的具体表达式,以及带有不同表达形式的特解的通解公式.  相似文献   

20.
文章给出了常系数线性微分方程解的表达式,对于解常系数线性微分方程带来了很大方便.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号