首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气体扩散层(gasdiffusionlayer,GDL)是实现质子交换膜燃料电池电极内有效气体传输的关键部件.在实际电池中,GDL所承受的装配压力会引起其内部结构较大的变形,尤其是脊下受压部位变形显著.然而,目前国内外相关研究主要集中在未受压GDL上,针对GDL局部受压后的变形对GDL内氧气传输过程的影响方面的研究相对较少,受压GDL内的传质机理尚不清楚.为阐明装配压力所引起的GDL微观结构变形对内部氧气传输过程的影响规律,本文基于有限单元法(finiteelementmethod,FEM)和GDL微观结构随机重构算法建立了压缩GDL孔尺度氧气扩散模型,针对4种装配压力(1.4 MPa,2.8 MPa,4.2 MPa,5.6 MPa)下GDL孔隙内的氧气传输过程进行了详细研究对比.同时,本文研究了孔隙率、纤维直径和GDL厚度等结构参数对压缩GDL内氧气传输特性的影响.结果表明:随着装配压力的增大,GDL内的最小氧气浓度值在逐渐减小,同时流道和脊下氧气浓度分布均匀性变差;随着纤维直径减小、孔隙率增大,在GDL平面方向,压缩GDL中的氧气扩散能力增加;在GDL厚度方向,流道和脊下的氧气浓度同时增加,且脊下氧气浓度上升较多,流道和脊之间氧气浓度梯度增加.GDL孔隙率对压缩GDL中氧气扩散影响较大,且随着GDL孔隙率的增加,GDL内的最小氧气浓度值也增加.当氧气在GDL平面内传输时,随着GDL厚度的减小,横向氧气传质阻力增大,GDL内最小氧气浓度值减小.同时,本文也发现纤维直径对压缩GDL中氧气扩散的影响较小.  相似文献   

2.
为研究交指流场质子交换膜燃料电池的输出性能,分析影响其性能的因素,寻找改善其性能的可行措施,探讨了使用交指流场流道的必要性和优越性,建立了包括质子交换膜燃料电池阴极/阳极侧流道、扩散层和催化层以及质子交换膜在内的完整的稳态、三维、两相数学模型.基于计算流体力学方法,用该模型对交指流场质子交换膜燃料电池的全流场进行了统一的数值计算以模拟其输出性能,分析了流场流型、氧化剂种类、反应气体进气速度、质子交换膜厚度和双极板筋宽对质子交换膜燃料电池输出性能的影响,确定了提高质子交换膜燃料电池输出性能的一些方法.将理论模型的模拟计算结果与实验结果进行比较,两者较为吻合.  相似文献   

3.
针对质子交换膜燃料电池在机械应力下的气-液两相流进行数学模拟研究,建立了一个二维质子交换膜燃料电池非等温两相流多物理场稳态模型. 该模型综合考虑了固体力学、电化学、传热传质以及气液两相流的物理因素,研究了质子交换膜燃料电池在机械应力作用下的两相流分布.计算结果显示:在机械应力作用下,燃料电池肋板下方的多孔介质应力明显大于流道下方的应力,且在肋板和流道交界处下方的气体扩散层会产生明显的应力集中现象;随着电流密度的增加,阴极相对湿度逐渐增加,但阳极相对湿度会减小;液态水仅在阴极产生且主要在肋板下方的多孔介质内形成,其在阴极的饱和度随电流密度的增加而不断增加.  相似文献   

4.
为避免电池"水淹",PEM燃料电池发生电化学反应产生的多余水必须及时排出.基于阴极催化层(CL)与气体扩散层(GDL)之间极易发生的"水淹"特点,建立实验模型,分析阴极催化层产生的水穿透碳纸气体扩散层材料到达气体流道的路径与阻力.在纵向传输过程中,GDL中最大孔中的最小孔径是限制水渗透的主要阻力.只有当水头压力足够大时,水才能进入并且穿过这些限制孔径的孔到达GDL材料表面.对于碳纸GDL材料,水在这些孔中流动时所需压力(~1kPa)显著小于水初始穿透这些孔所需压力(~6kPa).增加微孔层(MPL)会明显增加液态水的穿透阻力,MPL层中不同Teflon含量对水渗透压力影响不大.对碳纸GDL材料设置引导孔能显著降低液态水的渗透压力,有助于提升燃料电池中的水管理能力.  相似文献   

5.
目的研究气体扩散层多孔介质渗透率对高温质子交换膜燃料电池(HTPEMFC)性能的影响,优化PEMFC的结构参数,提高电池的整体性能.方法采用多物理场直接耦合分析软件COMSOL Multiphysics,以直通道流场结构的PEMFC在工作电压为0.4V的条件下,对气体扩散层渗透率分别设定为1.18×10-12m2、1.18×10-11m2、1.18×10-10m2以及1.18×10-9m2的HT-PEMFC进行数值模拟和结果分析.结果模拟结果得出了流道内沿流道方向的阴极压力变化、电池电流密度以及阴极气态水浓度的分布情况.结论随着气体扩散层渗透率的增大,能有效降低电池阴极流道内的压降,进而改善电池内部传质、降低额外的功耗,提高电池电流密度以及增强阴极的排水能力.对HT-PEMFC结构的优化和设计具有重要的指导意义.  相似文献   

6.
质子交换膜燃料电池多孔介质中水的两相迁移   总被引:1,自引:0,他引:1  
在混合流动模型的基础上,建立了一个新的二维两相流模型来研究质子交换膜燃料电池内水分的传递规律和分布状态,在该模型中,催化剂层作为一个有厚度的实体包含在电极中.模型耦合了质子交换膜燃料电池电极中的流动方程.组分方程、催化剂层和质子交换膜中的电势和电流密度分布方程,可以应用在质子交换膜燃料电池的阴极,也可以使用在阳极.同时,模型还考虑了相变引起的液相和气相间的动量变化,重点模拟了水分在燃料电池的阴极、阳极和质子交换膜中的传递规律及其分布状态.模拟结果显示:升高加湿温度、提高电流密度和降低电池温度都会使电池质子膜中的水分含量增大,质子传导率升高,也会使阴极中液态水含量增加,阴极浓差极化加剧.  相似文献   

7.
目的研究高温质子交换膜燃料电池的流道深度及其宽度对于提高其性能的影响.方法建立了一个二维、单相、稳态数学模型模拟研究高温质子交换膜燃料电池阴极氧气和水蒸气分布规律,分析流道深度及宽度对电池阴极中氧气、水蒸气浓度分布的影响.结果在高温质子交换膜燃料电池阴极中,氧气浓度沿着流道方向降低,而水分浓度则升高;从催化剂层到扩散层,氧气浓度升高,而水分浓度降低.在一定范围内增大流道深度,电池阴极催化剂层和扩散层内氧气浓度越大,水分浓度越小.在一定范围内增大流道宽度,电池阴极扩散层和催化剂层内氧气浓度越小,水分浓度越大.结论在一定范围内降低流道的深度和增大流道的宽度有利于氧气的传输与充分反应,可以提高高温质子交换膜燃料电池的性能.研究结果对高温质子交换膜燃料电池的流场结构参数的优化具有重要参考价值.  相似文献   

8.
为研究质子交换膜燃料电池内水对电池输出性能的影响,搭建了一维燃料电池气液两相流模型,该模型考虑了氧气、氢气、水蒸气和液态水在气体流道、气体扩散层和催化层中的流动以及膜结合水在聚合物中的传输过程,同时考虑了电池内部水的相变。采用该模型分析了进气相对湿度对燃料电池输出性能的影响,结果表明:在小电流密度工况下,高相对湿度入口气体能够降低电池内阻提高输出电压;在进气相对湿度较高和大电流密度条件下,阳极比阴极更容易发生水淹。  相似文献   

9.
质子交换膜燃料电池停机后吹扫仿真   总被引:2,自引:2,他引:0  
基于单电池内部水相变和传递的机理建立了燃料电池一维吹扫水传递模型,研究了空气同时吹扫阴阳极方法中电池温度、吹扫气体流量对吹扫的影响,并且对比了氢气和氧气分别作为阳极吹扫气体对吹扫效果的影响.仿真结果表明:吹扫初始时刻存在水从阴极到阳极的反扩散现象;电池温度对吹扫的影响程度大于流量对吹扫的影响程度,并且温度越高,膜含水量减少越快;空气吹扫阳极气体既节能又省时.  相似文献   

10.
为使质子交换膜燃料电池(PEMFC)内部的电极反应物和电极产物有一个更加稳定与均衡的分布,在燃料电池传统阴极蛇形流道的基础上,对其U形转弯入口及出口处进行渐缩渐扩处理,使流道U形转弯处侧壁形成一定角度的坡面,并建立了缩放坡面流道的单电池三维数值模型。对比研究了不同几何参数对流道内液态水动力学行为、排水效率、反应气体质量分数、电池最大功率密度的影响,结果表明坡面结构在一定程度上引导了液滴的流动路径,使流道底面的气体扩散层(GDL)附近气流扰动增强,氧质量分数和电流密度分布更加均匀,最大功率密度得到了明显提高,整体上提高了PEMFC内部的传质能力。  相似文献   

11.
采用Pt/C作为阴极催化剂,PtRu/C作为阳极催化剂,Nafion115和Nafion液涂覆膜作为质子交换膜,管状Ti丝(管)和平板式Ti网作为制备异型直接乙醇燃料电池的阴极和阳极的载体材料,制备管状阴极和平板阳极.观察了异型阴极和阳极的组织和结构,并通过单电池试验,研究了异型电极对直接乙醇燃料电池(DEFCs)性能的影响.结果表明,管状阴极涂覆的Nafion膜均匀一致,阳极催化剂与Ti网的结合能力较强,较高的O2流量有利于提高DEFCs单电池的性能,当膜载量达到25.0 mg/cm2以上时,会提高DEFCs单电池阻抗,当膜载量小于20.2 mg/cm2时,电池的使用寿命大大降低.  相似文献   

12.
复杂流道质子交换膜燃料电池单体的两相流模拟   总被引:1,自引:0,他引:1  
为更真实地模拟质子交换膜燃料电池的工作性能,特别是电池内生成的水蒸气过饱和的情况,发展了一个简化的稳态的、非等温的三维两相流数学模型.模型考虑了相变过程对电池的温度场和传质过程以及电池性能的影响.应用模型对一个电极面积为3.12 cm×4 cm蛇型流道结构质子交换膜燃料电池进行了数值计算,得到了电池内复杂的流场、温度、局部电流密度和组分浓度等的多维空间分布.最后,分析了不同的阴极反应气加湿对电池性能所产生的影响.  相似文献   

13.
为了研究扩散层孔隙率对质子交换膜燃料电池的性能影响,采用计算流体动力学商业软件 ANSYS Fluent在不同扩散层孔隙率(0. 3、0. 5、0. 7)的条件下,对传统平行流场和斜坡平行流场的性能曲线、气体浓度分布、液态 水分布进行数值模拟分析;结果表明:在高电位下各案例对应的性能差异较小,在中低电位性能差异较大,随着扩散层孔隙率越大,质子交换膜燃料电池性能越好,且孔隙率在 0. 3~ 0. 5 时电流密度增长率最大,最大可达 9. 03%;当扩散层孔隙率较高时,有利于反应气体穿过扩散层,使得催化层氧气浓度增大,促进了燃料电池内部的电化学反应;随着扩散层孔隙的增大,能够更有效地促进反应气体的传输,流道内水含量越高,越有利于液态水的排出;相比传统平行流场,斜坡平行流场电池性能更好,氧气分布更均匀,流道中气体流速更大,排水效果更好,且孔隙率为0. 7 时电流密度增长率最大,最大可达 28. 79%。  相似文献   

14.
为进一步探究双极板几何形状对层间接触行为的影响,以金属双极板为对象,搭建了双极板压缩试验台,同时建立了双极板压缩试验有限元模型,根据压敏纸采集到的试验结果验证了模型的有效性.然后,分别搭建了梯形、矩形和波浪形三种常见截面形状的双极板有限元模型,并搭建了相应的双极板压缩试验有限元模型.通过仿真分析研究在不同装配载荷作用下双极板截面形状对层间接触行为的影响.结果表明:装配载荷大小和双极板截面形状对双极板与气体扩散层(Gas Diffusion Layer, GDL)之间的接触行为有显著影响;在不同装配载荷作用下,三种双极板肋下的GDL表面接触应力幅值均在0.5~2 MPa之间,均符合装配要求;在同等条件下,双极板肋宽度是决定双极板与GDL之间整体平均接触应力幅值和GDL平均侵入面积的主要因素;在三种双极板中,矩形双极板下的接触行为对装配载荷的变化更为敏感,并且矩形双极板下平均接触应力分布均匀性最差.  相似文献   

15.
为寻求最佳的流道高度参数,利用由简化共轭梯度法(反向求解器)和完整的三维、两相、非等温燃料电池数学模型(正向求解器)构成的质子交换膜燃料电池多参数最佳化反问题求解方法,将流道各弯头处高度作为搜寻变量(最佳化对象),以电池输出功率密度的倒数作为目标函数,通过搜寻目标函数最小值,得到了流道各弯头处最佳高度(最优化设计参数值).结果表明,最佳的蛇型流场除出口流道为高度渐扩型外,其余流道均为高度渐缩型,其性能比传统蛇型流场提高了约11.9%.渐缩型的流道强化了肋下对流,可有效移除肋条下方多孔扩散层中的液态水,提高反应气向多孔电极的传递速率,因而改善了电池性能.渐扩型的出口流道可防止过强的肋下对流导致燃料"短路",直接跨过多孔扩散层从电池出口流出造成燃料浪费.  相似文献   

16.
为了考察质子交换膜燃料电池气体扩散层孔隙率的梯度变化对扩散层排水、导电、导气以及电池整体性能的影响,在综合考虑电化学反应、水的生成、相变及传输、氧气传输、膜中水传输等因素的基础上,研究了扩散层孔隙率沿厚度方向梯度变化时燃料电池内部的传输现象和电池性能.结果表明,梯度扩散层能够提高液态水和气体的通过能力,从而提高电池的性能,且孔隙率梯度越大排水性能越好.  相似文献   

17.
燃料电池阴极单相流压降是进行阴极在线水管理的基准,已有研究缺少该压降的全工况模型。该文在156W单片燃料电池上发现了阴极压降随电流、过量系数变化的二次方关系,并给出影响压降的5个参数:电流、过量系数、电池温度、进气压强以及进气湿度。提出了包括这些参数在内的流量二次方模型。通过分析各工况下模型系数与实验数据的对应关系得出模型与实验数据之间偏差小于10%。该模型可应用于蛇形流道或平行流道的所有电池堆,对在线水故障诊断具有一定的参考价值。  相似文献   

18.
流道的截面形状对质子交换膜燃料电池的性能有较大影响.基于流体力学计算方法搭建了三维质子交换膜燃料电池单电池模型,通过比较不同流道横截面形状、调整流道与气体扩散层接触面积的方式对模型进行数值模拟分析.结果表明:三角形和圆形流道生成的电流密度较大,燕尾形流道电流密度分布均匀性最好;燕尾形和圆形流道有最佳的水气分布均匀性.  相似文献   

19.
流道面积比与阴极流量对交叉型流道PEMFC性能的影响   总被引:1,自引:0,他引:1  
建立三维PEMFC传输模型,分析阴极流道面积比与阴极流量对交叉型流道质子交换膜燃料电池局部传递特性与电池性能的影响,模型中考虑了液态水生成,以更接近电池实际操作状态.流道面积比代表燃料流动面积与电池总面积之比,较大的流道面积比可提高燃料直接扩散面积,使更多氧气通过扩散方式进入扩散层和催化层参与电化学反应,增进化学反应速率,增大局部电流密度,从而提升电池性能.但对于交叉型流道设计,模拟结果表明,由于流道中挡板的作用,燃料由自然扩散传质转变为强制对流传质,流道面积比的影响被消弱,最佳的电池性能出现在流道面积比为0.4时.结果也显示,提高阴极流量可改善电池性能.通过分析电池内部电流密度、氧气流量和液态水分布等局部传递特性,揭示了流道面积比与阴极流量对电池性能影响的内在原因.  相似文献   

20.
质子交换膜燃料电池双极板上流场的设计在很大程度上影响燃料电池的性能.传统燃料电池平行流场虽然结构简单,易于加工,但存在气体分布均匀性不佳,水淹现象严重等问题.本文对传统的平行流场进行改进,设计了一种新型混合流场的质子交换膜燃料电池,并利用Comsol软件对新型混合流场燃料电池的阴极气体浓度、水的摩尔浓度、电流密度进行计算分析.结果表明,混合流场燃料电池在气体分布均匀性、水的去除能力上均优于传统平行流场燃料电池.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号