首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 406 毫秒
1.
风-车-桥耦合系统的车桥气动特性   总被引:2,自引:0,他引:2  
采用数值模拟方法对风-车-桥耦合系统的车桥气动特性进行分析研究,模拟计算了不同工况下车辆、桥梁的气动力系数。分析了车桥间相互的气动影响.研究结果表明.车桥耦合系统与桥梁和车辆各自单体相比较,气动力系数差异较大,故建议进行风-车-桥系统耦合振动分析时,车桥气动力系数应考虑车桥间的气动影响.  相似文献   

2.
基于计算流体动力学,采用数值模拟的方法研究了车桥耦合体系气动力特性和风压分布.首先选取了雷诺应力湍流模型,分别建立了桥梁单体模型、车辆单体模型和车桥耦合体系模型.计算了3个模型在不同风向角下的气动力系数,并对各自的风压分布进行了比较.车桥耦合体系考虑了车辆和桥梁的耦合效应,在不同风向角工况下,车桥耦合体系的气动力系数,包括升力系数、阻力系数和倾覆力矩系数,都明显增大.计算结果表明,车桥耦合体系与桥梁和车辆各自单体相比较,气动力系数差异较大,故设计中应对此给予重视,以确保行车安全.  相似文献   

3.
为研究风攻角对强风作用下大跨度斜拉桥车-桥系统耦合振动的影响,通过风洞试验得到不同风攻角条件下桥梁主梁和桥上不同位置处列车的三分力系数;在此基础上,依据弹性系统动力学总势能不变值原理,进一步建立风-车-桥耦合系统振动方程,求解方程并就风攻角对桥梁和列车的动力响应的影响进行分析研究。研究结果表明:风攻角对桥梁和列车的气动三分力系数影响较大;桥梁跨中处的横向振动位移在攻角为-12°时有最大值,竖向振动位移在攻角为-6°时有最大值,极大值均未在攻角为0°时出现;风攻角对车辆动力响应的影响较大,但各项动力响应受风攻角影响而出现变化的趋势并不相同;列车的脱轨系数、轮重减载率和横向力在负向攻角时比正向攻角时的大,且随负向攻角绝对值的增大有增大趋势。  相似文献   

4.
现有车-桥耦合振动分析中车辆模型不能精确考虑车辆动力特性和柔性轮胎对车桥耦合振动响应的影响.为了进一步研究充气轮胎胎压对车-桥耦合振动的影响,基于LS-DYNA程序,采用线弹性橡胶材料模拟轮胎并定义轮胎内气压,结合常用重载三轴汽车的结构参数,运用弹簧阻尼单元及梁、壳单元模拟车辆悬架系统的动力特性,建立可分析车轮气压的三维车辆模型;并基于实桥试验结果及响应面法得到高精度有限元桥梁模型;通过显式求解程序LS-DYNA内置的接触算法,将车辆子系统和桥梁子系统联立耦合起来,形成显式的车-桥耦合振动分析模型.计算结果与实测结果对比分析验证了该方法的正确性,并分析了轮胎胎压对桥梁振动的影响.  相似文献   

5.
文章研究车-桥耦合系统的非线性振动特性,采用有限分段思想,建立1/4车辆模型和变截面连续梁桥的车-桥耦合振动方程,在MATLAB环境下编制基于Runge-Kutta算法的车-桥耦合振动数值分析程序,得到桥梁跨中位移响应;以某三跨混凝土连续梁桥为算例,分析车桥质量比、车辆速度、车辆弹簧刚度、信噪比4组参数的变化对变截面连续梁桥损伤识别的影响。结果发现:车桥质量比和信噪比较大时,桥梁损伤识别效果较好;较低的行车速度有利于桥梁的损伤识别研究;车辆弹簧刚度的影响非常小,可忽略不计。  相似文献   

6.
基于提出的抖振力模型和建立的风-车-桥耦合振动模型,发展了一种可以考虑抖振力空间相关性的风-车-桥耦合振动分析方法,并编制了相应的计算程序.以江顺长江大桥为工程背景,测试了桥梁抖振力的空间相关性和考虑车桥耦合作用的车桥气动参数,分析研究了桥梁抖振力空间相关性对侧风作用下桥梁和车辆耦合动力响应的影响.研究结果表明:桥梁抖振力空间相关性对桥梁动力响应有显著影响,对车辆的动力响应也有一定的影响.  相似文献   

7.
以某一匝道公路连续曲线箱梁桥为例,分析了该类桥梁的空间车桥耦合振动响应及冲击系数.考虑桥梁阻尼比和桥面平整度的影响,采用通用软件ANSYS模拟桥梁,车辆简化为16自由度模型,采用模态综合法编制了公路曲线车桥耦合振动响应MATLAB程序,研究了多车荷载作用下连续曲线箱梁桥的动力响应.研究表明:主梁竖向挠度冲击系数受横向加载车辆数量的影响较小,跨中截面外腹板动力响应最大,建议采用外腹板处冲击系数进行设计.当纵向车辆间距一定,车速低于22 m·s~(-1)时,冲击系数在单车工况下最大,且随着纵向加载车辆数量的增多而显著减小;当车速超过22 m·s~(-1)时,纵向两车和三车工况下,主梁冲击系数有围绕单车工况下冲击系数曲线上下波动的趋势.纵向车辆间距对设计时选取的冲击系数影响较小.  相似文献   

8.
为研究龙卷风作用下大跨度桥梁车-轨-桥系统动力响应及行车安全性,首先以Kou-wen三维模型模拟龙卷风速度场,基于准定常理论确定了移动龙卷风作用下车辆和桥梁风荷载时程. 然后,分别采用多体系统动力学和有限元理论建立列车和轨道-桥梁子系统动力方程,基于轮轨空间非线性接触建立风-车-轨-桥系统动力方程,并采用分离迭代法求解系统动力响应. 数值算例中,以某公路铁路两用斜拉桥为研究对象,通过风洞试验和CFD数值模拟确定车辆和桥梁气动力系数,分析了龙卷风移动路径、强度等级和行车速度对车-桥系统动力响应及列车行车安全性的影响. 结果表明:桥梁竖向振动响应比横向显著,且龙卷风竖向风速对桥梁竖向位移起控制作用 . 当车辆经过风荷载最大位置时,车辆的横向和竖向振动响应均达到最大值,且车辆动力响应受龙卷风荷载和桥梁动力响应共同影响. EF1级和EF1.3级龙卷风作用下,列车安全通过的车速阈值分别为180 km/h和114 km/h.  相似文献   

9.
根据公路桥梁车桥耦合振动特性及结构动力模型试验的相似理论,基于π定理,采用量纲矩阵分析方法,推导了车桥耦合振动模型试验相似律.几何相似比尺取10,计算了车桥耦合振动缩尺模型试验系统的相似常数;以30 m简支梁桥和330 kN载重汽车为原型,设计制作了包含有机玻璃模型桥、试验小车及附属部分的车桥耦合振动模型试验系统.通过试验测试与理论分析对比,校验了模型桥、试验小车动力特性;以单车荷载按正常行车道位置行驶在光滑桥面为例,研究了模型桥的静态和动态响应,并将模型桥测试结果与Matlab数值模拟结果对比,校验了车桥耦合振动相似理论.研究结果表明:提出的车桥耦合振动缩尺模型试验相似律关系正确,设计制作的车桥耦合振动模型试验系统可行,模型桥基频误差为0.01%,模型试验车基频理论值与实测值相差3%,试验测试结果可靠.  相似文献   

10.
针对双主梁钢-混组合梁桥车-桥耦合振动问题,文章以某高速公路路段1座4×35 m双主梁钢-混组合梁桥为例,设计一种通过调谐质量块与黏弹性层之间的碰撞来耗散能量的碰撞调谐质量阻尼器(pounding tuned mass damper, PTMD),以减小车辆引起的桥梁振动;结合桥梁和车辆的运动方程,建立车-桥-PTMD耦合系统运动方程;考虑路面条件,基于三维车辆模型、桥梁模型和PTMD系统建立车-桥-PTMD耦合系统的仿真模型,以研究该装置的减振效果。结果表明,该文研究的PTMD对钢-混组合梁桥的车-桥耦合振动有明显的抑制效果,且随着其质量比的增大,减振效果有显著提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号