首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
在传统共栅放大器结构基础上,基于0.18 μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2 GHz宽带低噪声放大器(LNA). 该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化. 后版图仿真结果显示,在0.8~5.2 GHz频段内,该宽带LNA的功率增益范围为12.0~14.5 dB,输入反射系数S11为-8.0~-17.6 dB,输出反射系数S22为-10.0~-32.4 dB,反向传输系数S12小于-45.6 dB,噪声系数NF为3.7~4.1 dB. 在3 GHz时的输入三阶交调点IIP3为-4.0 dBm. 芯片在1.5 V电源电压下,消耗的功率仅为9.0 mW,芯片总面积为0.7 mm×0.8 mm.  相似文献   

2.
设计一种满足全频段全球卫星导航系统(global navigation satellite system,GNSS)接收机应用要求的低噪声放大器(low noise amplifier,LNA)。为提高射频前端的集成度并降低成本,提出一种基于发射极电感负反馈结构宽带LNA的实现方法,并对电路结构、宽带输入阻抗匹配和噪声性能进行分析。电路采用0.18μm SiGe BiCMOS工艺设计和实现。研究结果表明:在GNSS全频段范围(1 164~1 610 MHz)内,输入回损大于8.0 dB,输出回损大于8.9 dB,噪声系数低于1.30 dB,功率增益高于14.9 dB,输入三阶互调点为-5.8 dBm。芯片最低功耗为9.6 mW,面积约为600μm×650μm。  相似文献   

3.
设计了一款超宽带低噪声放大器(UWB LNA).采用Cascode-共基极电流复用结构,直流通路时能有效降低功耗,交流通路时增加了电路的增益,并且保持了Cascode结构高反向隔离性的优点.采用有源电感替代输出级的螺旋电感,减小了芯片面积,并且通过改变有源电感等效电感值的大小,实现UWB LNA增益的调节功能.基于Jazz 0.35μm SiGe BiCMOS工艺,利用射频/微波集成电路仿真工具ADS对该UWB LNA进行了验证.结果表明:在3.1~10.6GHz频段内,增益大于14.1dB,噪声系数小于4.0dB,输入与输出反射系数均小于-10dB,频率为7GHz时输入三阶交调点为-11dBm,功耗为19.75mW.  相似文献   

4.
提出了一种可用于0.1-1.2 GHz射频接收机前端的宽带巴伦低噪声放大器(Balun-LNA).采用噪声抵消技术,输入匹配网络的沟道热噪声和闪烁噪声在输出端被抵消,在宽带内可同时实现良好的输入匹配和低噪声性能.通过分别在输入匹配级内增加共源放大器,在噪声抵消级内增加共源共栅放大器实现单端转差分功能.电路采用电流复用技术降低系统功耗.设计基于TSMC 0.18 μm CMOS工艺,LNA的最大增益达到13.5dB,噪声系数为3.2-4.1 dB,输入回波损耗低于-15 dB.在700 MHz处输入1 dB压缩点为-8 dBm,在1.8 V供电电压下电路的直流功耗为24 mW,芯片面积为0.062 5 mm 2 .  相似文献   

5.
本文采用TSMC 0.18μm CMOS工艺,设计了两款可工作在2.4GHz频率上的窄带低噪声放大器(LNA)。两款LNA的电路结构分别为Cascode电路结构应用电流复用技术,以及应用正体偏置效应的折叠Cascode结构。所设计的两款窄带LNA的仿真结果表明,在2.4 GHz工作频率上,Cascode结构LNA在1.5V供电电压下电路功耗为4.9mW,增益为23.5dB,输入输出反射系数分别为-16.9dB与-16.3dB,噪声系数为0.72dB且IIP3为3.12dBm;折叠Cascode结构LNA可在0.5V供电电压下工作,功耗为1.83mW,增益为23.8dB,输入输出反射系数分别为-28.2dB与-24.8dB,噪声系数为0.62dB且IIP3为-7.65dBm,适用于低电压低功耗应用。  相似文献   

6.
从获取最小噪声系数角度来进行电路设计,采用Avago公司的0.2um GaAs pHEMT工艺芯片(T=18GHz),设计了工作于X波段(9-11GHz)的两级宽带低噪声放大器。测试结果为:在9-11GHz,噪声系数小于1.15dB,最小噪声系数在9.8GHz为1.015dB,功率增益在所需频段9-11GHz大于24dB,输入和输出回波损耗均小于-10dB。  相似文献   

7.
文章利用有损匹配的方法设计了一种覆盖X、Ku波段的宽带低噪声放大器,其工作频率为8~18 GHz,带内功率增益大于32 dB,增益平坦度小于3 dB,输入输出端口的回波损耗S11和S22均优于-7 dB,噪声系数小于2.8 dB,最大输出功率为16 dBm,且具有工作频带宽、输入输出匹配结构简单的特点.  相似文献   

8.
采用两级锗硅异质结晶体管(SiGe HBT)低噪声放大芯片,通过ADS2015进行宽带电路匹配设计了一款频率覆盖超短波到L波段的宽带低噪声放大器(LNA).仿真显示该LNA工作频率在0.07~2 GHz,增益Gain>30 dB,噪声系数NF<0.78,增益平坦度Gain Flatness<0.2 dB,输入输出回波损耗Return Loss<-10 dB.实测结果显示常温下该LNA测试指标和仿真结果基本一致,233 K低温下该LNA的Gain实测值比常温下测试结果增大1 dB左右,其它指标基本一致,证实了采用SiGe HBT放大芯片设计的低噪声放大器噪声性能良好且具有低温敏特性.  相似文献   

9.
针对目前在LNA设计中存在需要在任意给定的功耗条件下噪声和输入阻抗同步匹配的问题,本文采用TSMC0.18μm RF工艺,通过利用共源共栅结构和功耗受限下噪声和阻抗同步匹配技术(PCSNIM),提出了一个可支持IEEE802.11a无线局域网(WLAN)标准的5.8GHz CMOS低噪声放大器,在中心频率处所提出的低噪放大器的噪声系数(NF)只有0.972dB。仿真结果表明:在1.8V供电电压下LNA的功耗为6.4mW,增益可达17.04dB,输入1dB压缩点(P1dB)约为-21.22dBm,同时具有良好的输入输出匹配特性。  相似文献   

10.
为满足高性能射频前端接收部分对高线性度的需求,基于SiGe BiCMOS工艺设计并实现了一款工作在2.4 GHz频段的高线性度低噪声放大器(Low Noise Amplifier,LNA).该放大器采用Cascode结构在增益与噪声之间取得平衡,在Cascode结构输入和输出间并联反馈电容,实现输入端噪声与增益的同时匹配.设计了一种改进的动态偏置有源电流镜以提升输入 1 dB压缩点及输入三阶交调点的线性度指标.为满足应用需求,LNA与射频开关及电源模块集成组成低噪声射频前端接收芯片进行流片加工测试.测试结果表明:在工作频率2.4 ~2.5 GHz内,整个接收芯片增益为14.6 ~15.2 dB,S11、S22<-9.8 dB,NF<2.1 dB,2.45 GHz输入1 dB压缩点为-2.7 dBm,输入三阶交调点为+12 dBm.芯片面积为1.23 mm×0.91 mm.该测试结果与仿真结果表现出较好的一致性,所设计的LNA展现出了较好的线性度表现.  相似文献   

11.
为了改善现有宽带低噪声放大器(LNA)拓扑结构电路的性能,文中提出了一个交叉耦合和负反馈技术相结合的宽带低噪声放大器架构.该LNA基于复合NMOS/PMOS交叉耦合的无电感宽带差分并联反馈共源低噪声放大器(SFCS-LNA),进一步在输出端和输入端增加交叉连接的PMOS管,引入新的负反馈结构,通过对所引入PMOS管的跨导进行调节,增加了LNA输入匹配的自由度,以解决原复合NMOS/PMOS交叉耦合SFCS-LNA的反馈电阻受限于输入匹配的问题,从而在保证输入匹配的同时提高反馈电阻的阻值,改善LNA中的噪声、输入匹配和增益之间相互制约的矛盾.结果表明,该LNA架构能有效降低LNA的噪声系数和提高LNA的电压增益.  相似文献   

12.
基于TSMC 0.18μm RFCMOS工艺,设计了一款应用于P波段和L波段(405 M-2.2 GHz)的全集成射频发射前端芯片.系统由单转双巴伦、混频器、可变增益放大器和驱动放大器组成,系统架构基于改进的直接上变频方案.基带和本振端口的巴伦采用了一种能够同时实现噪声和非线性消除及宽带阻抗匹配的结构,混频器使用了正交双平衡基尔伯特结构,可变增益放大器基于跨导可变的共源共栅结构进行设计,驱动放大器采用了具有高线性度和宽带匹配特性的推挽结构.后仿真结果表明,在3.3 V电源电压下,该发射前端直流电流为76 m A,版图面积为2.4 mm×2.0 mm;具有可控电压增益10-30 dB;输出1 dB压缩点大于10.8 dBm;中频大于25 MHz时,噪声系数小于8 dB;基带和射频端口反射系数小于-20 dB,本振端口反射系数小于-15 dB.  相似文献   

13.
采用SMIC 0.13μm CMOS工艺设计并实现了一种多模差分窄带低噪声放大器,可以用于DCS1800,PCS1900,WCDMA和Bluetooth等多种无线接收机系统.电路采用共源共栅源极退化电感结构,输出为LC并联谐振网络,通过开关调节电容阵列改变谐振频率;输入采用片外可调匹配网络,实现不同频带下输入阻抗匹配,使低噪声放大器工作在不同通信标准下.考虑了静电保护和焊盘等引入的寄生电容,分析了输入阻抗、增益、噪声和线性度等关键参数,提出了输入阻抗匹配和噪声优化措施.测试结果显示,在DCS1800,PCS1900,WCDMA,Bluetooth模式下:噪声系数分别为2.3,2.3,2.4,2.5 dB;功率增益分别为8.0,8.8,9.3,9.4 dB;输入三阶交调点分布为-9.0,-6.3,-2.6,-1.5 dBm.在1.2 V电源电压下消耗电流3.3 mA.  相似文献   

14.
概述了GaAs MMIC放大器的技术发展,探讨了功率单片的设计技术。介绍了一种S/C波段宽带GaAs MMIC功率放大器的设计与工艺制作情况。该芯片采用有耗匹配电路结构,利用HFET工艺制作,在3~6GHz频段内饱和输出功率达到3W,功率增益大于23dB,输入、输出驻波比均小于2.5:1,效率为18~25%。  相似文献   

15.
鉴于传统共源共栅低噪声放大器由于受共栅级的影响.其噪声和线性度都不理想,为此在共栅级上引入一对交叉耦合电容和电感,以消除共栅级的噪声并提高放大器的线性度.采用特许半导体公司0.25μm射频互补金属氧化物半导体工艺进行了设计.仿真结果表明低噪声放大器在2.4 GHz处的噪声系数仪有1.34dB.该电路能够提供17.27 dB的正向增益、小于-38.37 dB的反向传输系数、小于-27.73 dB的输入反射系数、小于-15.85 dB的输出反射系数,该放大器的三阶交调点为0.58 dBm.消耗的功率为11.23 mW.  相似文献   

16.
基于UMC 0.18 μm CMOS 工艺,设计了一款用于全球卫星导航系统(GNSS)的宽带低噪声放大器(LNA). 其中,采用并联反馈电阻噪声抵消结构降低整体电路的噪声,使用电感峰化技术提升工作频带内的增益平坦度,进而优化高频噪声性能. 此外,采用共源共栅结构提高电路的反向隔离度. 仿真结果表明,在电源电压为1.8 V 的条件下,低噪声放大器的-3 dB 带宽为1 GHz,最大增益为15.08 dB,在1-2 GHz 内增益变化范围为±1 dB,噪声系数为2.65-2.82 dB,输入回波损耗和反向传输系数分别小于-13 dB 和-40 dB. 芯片核心面积为740 μm×445 μm.  相似文献   

17.
设计了一种400~800 MHz带有源巴伦的低噪声放大器(balun-LNA).电路输入级采用共栅结构实现宽带匹配,输出端使用共源漏技术来实现巴伦功能,将单端输入信号转变为差分输出信号,利用参数优化设计来降低噪声性能.电路采用TSMC 0.18 μm RF CMOS工艺仿真,结果表明:在400~800 MHz工作频段内,balun-LNA的输入反射系数小于-12 dB,噪声系数为3.5~4.1 dB,电压增益为18.7~20.5 dB,在3.3V电压下功耗约为17.8 mW.  相似文献   

18.
针对互补金属氧化物半导体工艺在高频时性能差的缺点,基于砷化镓赝配高电子迁移率晶体管器件,设计了一种用于无线通信系统的宽带低噪声放大器,宽带低噪声放大器的设计采用负反馈来获得平坦的增益和较低的输入输出反射系数。电路版图设计好后利用Advanced Design System 2005进行仿真。仿真结果表明,该放大器在0.3~2.2 GHz频带内,增益高于12 dB,且变化小于3 dB;噪声系数在1.04~1.43 dB之间,输入输出反射系数均小于-10 dB,群延时特性在整个频带内接近线性,且在整个频带内无条件稳定,所设计的宽带低噪声放大器能够很好地满足实际需要。  相似文献   

19.
为了实现无线电接收机对多个通信标准的兼容和对信号链路增益的自动调节,提出了一种适用于宽带(0.8~2.7GHz)接收机并具备自动增益控制(AGC)功能的正交解调器。该解调器的信号主路上采用一个宽带设计的射频可变增益放大器和一个中频可变增益放大器,频率变换则通过一个增益可调的吉尔伯特单元实现。在信号反馈环路上采用一个均方根功率检波器检测输出信号的幅度并转换成直流电压,然后通过检波器输出的直流电压控制主路上各个模块的增益,从而形成一个AGC闭环系统。该解调器仅采用模拟电路实现AGC功能,避免了传统数字辅助型AGC需要大量端口、算法实现复杂和精度受有限步长的限制等缺点。该解调器在0.18μm BiCMOS工艺平台下设计并流片验证,测试结果表明:在0.8~2.7GHz内,正交解调器的可调转换增益范围为-36~36dB,解调带宽为100MHz;最大增益下噪声系数为9dB,正交相位误差1.6°,幅度误差为0.9dB。  相似文献   

20.
为在超宽带(Ultra-wideband,UWB)通信中抑制工作频带内的窄带干扰,提高接收机性能,提出了一个用于超宽带接收机的具有带阻特性的低噪声放大器(low noise amplifier,LNA)。该放大器利用源简并电感得到实数的输入阻抗,利用输入匹配网络扩展工作带宽,利用具有带阻特性的负载网络得到宽带内的带阻特性。通过建立源简并结构超宽带LNA的电路模型,分析了超宽带LNA的放大器晶体管尺寸与功耗、增益、噪声系数之间的关系,提出了放大器晶体管尺寸的设计方法,同时给出了输入匹配网络和负载网络的电路结构和设计方法。基于SMIC 0.18μm CMOS工艺的仿真表明,通过该方法设计的LNA,其通带和阻带性都能符合设计指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号