首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
利用光学显微镜、扫描电子显微镜、X射线衍射仪等分析手段研究了固溶时效及退火工艺对AZ80铸造镁合金显微组织的影响。结果表明,固溶处理可获得单相α-Mg固溶体组织;在随后的时效处理中β-Mg17Al12相以连续析出和不连续析出两种方式重新析出;在退火处理的缓慢冷却过程中β-Mg17Al12相以层片状形式析出;退火后的球化处理使层片状β-Mg17Al12相通过自身溶断的方式获得均匀细小的球状β-Mg17Al12相。  相似文献   

2.
以AZ91D镁合金为研究对象,研究了固溶处理对后期时效处理效果的影响.结果表明:415℃固溶处理5h后,铸态AZ91D镁合金中分布在晶界处的网状脆性相β-Mg_(17)A_(12)基本全部溶入基体相α-Mg中.后续时效期间沉淀相β-Mg_(17)A_(12)主要在晶界处不连续析出细小条状晶;而在晶内则连续析出颗粒状或短棒状晶.固溶时效处理后析出的β-Mg_(17)A_(12)相尺寸较铸态时大幅减小.晶内析出的β-Mg_(17)A_(12)相尺寸和间距小于400nm时,对提高合金力学性能的贡献很大.拉伸断口上撕裂片越大、解理台阶越多,则晶内析出β-Mg_(17)A_(12)相的尺寸越小、数量越多、分布越弥散,极有利于大幅提高合金的力学性能.415℃固溶处理10、24h后再经200℃时效处理16h,合金的抗拉强度出现2个峰值,较铸态时分别提高22.2%、34%,硬度提高了35.8%、34.7%.  相似文献   

3.
使用六面顶压机对AZ91D镁合金进行高压处理,研究了处理前后合金的压缩力学性能和组织结构变化,并观察了其压缩断口形貌。结果表明:5GPa高压处理可明显提高铸态AZ91D镁合金的力学性能。压缩强度最高可达287 MPa,压缩率最高可达21%,分别比高压处理前提高22.6%和43.8%。随处理温度的升高铸态AZ91D镁合金中的强化相Mg17Al12逐渐溶解到α-Mg基体中,但经200~800℃高压处理的合金一直保持较高的强度。  相似文献   

4.
热处理对AZ91D镁合金组织及力学性能的影响   总被引:3,自引:0,他引:3  
结合Mg-Al二元相图,研究不同时间固溶处理对AZ91D镁合金力学性能的影响,以及固溶时效处理后镁合金组织、性能的变化.结果表明,随着固溶处理时间的延长,AZ91D镁合金中的β相逐渐分解并溶入α相中,固溶处理5 h后,β相完全分解;继续延长固溶处理时间,AZ91D镁合金中的合金元素在扩散机制的作用下趋向均匀.研究还发现,AZ91D镁合金经415℃×10 h和415℃×24 h固溶处理后力学性能最优,且经时效处理后这2组工艺仍具有最优的力学性能.  相似文献   

5.
激光功率对AZ91HP镁合金熔凝层组织和性能影响   总被引:1,自引:0,他引:1  
为提高镁合金表面耐磨蚀性,开展了真空条件下AZ91HP镁合金CO2激光熔凝处理.固定扫描速度下通过改变激光功率,分析讨论了激光功率对熔凝层组织和性能的影响.研究结果表明,随激光功率增加,硬质相β-Mg17Al12含量逐渐增加,熔凝层枝晶逐渐粗化,枝晶变长;由于枝晶细化和硬质相β-Mg17Al12的综合作用,熔凝层在激光功率为3 kW时具有较高的硬度,较好的耐磨性;熔凝层耐蚀性随功率增加而提高.  相似文献   

6.
Ho对AZ91镁合金显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
采用扫描电镜观察、X射线衍射和拉伸试验等方法对稀土钬(Ho)改性Mg-9Al-1Zn (AZ91)镁合金的显微组织和力学性能进行了研究.结果表明:Ho能够充分细化AZ91镁合金中的α-Mg和β-Mg17Al12晶粒,抑制二次β-Mg17Al12的析出,使不完全离异共晶转化为离异共晶,并在合金中生成颗粒状Al2Ho金属间化合物.Ho通过细晶强化增加了合金强度,改善了塑性,使合金的断裂机制从脆性解理断裂转变为准解理断裂.  相似文献   

7.
采用粉末冶金方法制备了AZ91镁合金,研究了烧结温度对合金的致密度和热导率的影响规律,并对烧结样品的物相和显微组织进行了分析. 研究发现,AZ91镁合金的最佳烧结温度为610℃,致密度可以达到97.4%,实验条件下所获得的最高热导率可达到63.1W·m-1·K-1. X射线衍射和扫描电子显微镜结果分析表明,烧结合金组织主要由α-Mg固溶体和β-Mg17Al12相两相组成,其中β-Mg17Al12相表现出离异共晶β相和非连续析出β相两种主要存在形态.  相似文献   

8.
通过铜模铸造制备快速凝固的AZ91HP镁合金.利用失重法及动电位极化曲线研究了常规铸造AZ91HP和快速凝固AZ91HP镁合金样品在NaCl腐蚀介质中的耐腐蚀性能;通过金相显微镜(OM)、扫描电镜(SEM)及X射线衍射(XRD)分析了腐蚀后合金微观组织及相结构.结果表明,快速凝固的AZ91HP镁合金具有更好的耐腐蚀性能.其主要原因是经快速凝固工艺后:①β-Mg17Al12相近似连续地分布于细小的α-Mg晶界上;②合金的元素分布更加均匀;③合金显微缩松减少.  相似文献   

9.
采用金相显微镜、XRD、SEM、极化曲线以及盐雾腐蚀实验等方法对压铸、固溶(T4)及人工时效(T6)AZ91D镁合金样品的组织结构演变及腐蚀行为进行了研究。结果表明,薄壁压铸AZ91D镁合金在415℃下保温6h后,β-Mg17Al12相完全溶解;200℃人工时效2h后β相首先在晶界处析出,且随着时效时间的延长,析出相逐渐增多;T4样品由于β相的溶解导致其耐腐蚀性最好,仅在局部形成微小的腐蚀点,T6样品由于微电池腐蚀效应导致其耐腐蚀性最差,而且随时效时间延长,耐腐蚀性逐渐降低。  相似文献   

10.
用CaCO3作细化剂研究了对AZ31镁合金凝固组织的影响.结果表明:在AZ31中添加质量分数为0.5%的CaCO3,在760℃保温10 min后细化效果最佳,α-Mg晶粒的尺寸由基体合金的570μm降至209μm,降幅约63.3%.通过能谱分析、结合能和自由能的计算证实,细化机理是CaCO3反应后生成Al4C3,其中部分Al4C3质点作为异质核心,使晶粒细化,其余的Al4C3质点钉扎晶界也阻碍了晶粒长大.Al元素随固/液界面前沿被快速推至晶界,生成沿晶界生长的β-Mg17Al12相,起到进一步固定晶界的作用.合金元素的分布均有改变.  相似文献   

11.
为探索和改善轧制包铝镁合金板的界面结合状况,用气体保护铸造法制备了1060铝板包覆AZ31镁合金铸锭.借助金相显微镜、扫描电镜以及X射线衍射等分析方法,研究了复合铸锭芯材及界面的显微组织和相结构,并进行了硬度测试.发现AZ31镁合金芯材组织由α-Mg基体以及沿晶界分布的不连续网状α-Mg+p+Mg17A112共晶体组成,是一种典型的铸造离异共晶组织.铸造包铝镁合金锭界面形成扩散溶解层,扩散溶解层由α-Mg固溶体层、共晶层(α-Mg+β+Mg17A112)、β-Mg17A112及A1Mg化合物层组成,形成具有多层结构的冶金结合界面.提出了浇注AZ31熔体的瞬间在1060铝板表面形成“熔池”并快速凝固的界面形成机制.  相似文献   

12.
研究了复合添加Nd和B对AZ91镁合金的微观组织和力学性能的影响。结果表明,复合添加B和Nd明显细化了α-Mg和β-Mg17Al12相。晶粒细化主要源自于AlB2相作为α-Mg的异质形核衬底,添加的Nd细化了β-Mg17Al12相。扫描电镜分析表明,Al2Nd和Mg12Nd主要分布在晶界上,并且对合金力学性能起到了重要的促进作用。由于晶粒细化及热稳定相Al2Nd和Mg12Nd的存在,AZ91镁合金的常温力学性能得到大大改善。  相似文献   

13.
针对传统可溶性压裂球材质存在的缺点,采用铸造法制备性能优异的可溶性镁合金,系统研究了铝含量对可溶性镁合金组织、溶解性能及力学性能的影响.结果表明:可溶性镁合金组织由α-Mg和β-Mg17 Al12相组成,随着铝含量的增多,组织中β-Mg17 Al12相数量增多,呈连续网状分布于α相晶界处,并且α晶粒也变得粗大.可溶性镁合金在氯化钾(KCl)溶液中可自行溶解,且随KCl浓度的升高,溶解速率变大,在质量分数为3%的KCl中溶解性能最佳.随着铝含量的增加,可溶性镁合金的溶解速率变大,室温下溶解速率最高可达7.42 mg·h-1·cm-2.溶解产物粒度分析结果显示,中值粒径D50为38.691μm,溶解产物物相为Mg17 Al12和Mg(OH)2.可溶性镁合金的抗压强度最高可达430 MPa,变形量为3.0%时试样断裂,随着铝含量的增加,可溶性镁合金的塑性降低.  相似文献   

14.
热处理工艺对AZ61镁合金干摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
通过常温下的销盘式干滑动摩擦磨损试验,研究固溶及不同时间的时效处理对铸态AZ61镁合金摩擦磨损性能的影响.试验载荷为100 N,滑动速度为0.78 m/s,滑动距离为1 km.结果表明:固溶处理使铸态合金中的粗大β-Mg17Al12相溶解,导致合金的硬度降低,摩擦系数和磨损率升高;在170℃下对AZ61合金进行不同时间(0~80 h)的时效处理使尺寸细小的β相在晶内和晶界处析出,提高了合金的耐磨性,其中时效20 h后合金的摩擦系数和磨损率最低.AZ61合金在摩擦磨损的过程中共存在三种磨损机制:磨粒磨损、氧化磨损及剥层磨损.  相似文献   

15.
With the rapid development of 3 C industries,the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly.However,the thermal conductivities of most common Mg foundry alloys(such as Mg-9 wt%-lwt%Zn) are still relatively low.In this study,we developed a high-thermal-conductivity Mg-4 Al-4 Zn-4 RE-1 Ca(wt%,AZEX4441) alloy with good mechanical properties for ultrathin-walled cellphone components via high-pressure die casting(HPDC).The HPDC AZEX444...  相似文献   

16.
为探究气体保护纯镁及镁合金免于氧化及燃烧的机制,研究了体积分数为3%SO2和97%CO2混合气体在非封闭熔化炉中对熔融纯镁及AZ91D合金的保护行为。借助具有能谱测定(EDS)的扫描电镜(SEM)、X射线衍射仪(XRD)分别分析了熔融纯镁及AZ91D合金表面膜的显微组织、化学成分及相组成。结果表明:在680℃AZ91D合金表面膜密集连续,其厚度约为2μm,而纯镁表面膜厚度约为1μm,混合气体对AZ91D合金的保护效果优于纯镁。两种熔体表面膜由MgO、MgS及少量单质C相组成。除AZ91D表面膜含有少量Al外,两种表面膜均含有S、C、O及Mg元素。  相似文献   

17.
The as-cast and heat-treated microstructures and mechanical properties of the AZ91 magnesium alloys with and without minor Sc addition were investigated and compared in this paper. The results indicated that adding0.15–0.45 wt% Sc to the as-cast AZ91 alloy not only could modify and refine the Mg_(17)Al_(12) phase but also suppress the formation of the Mg_(17)Al_(12) phase. At the same time, the grains of the Sc-containing as-cast AZ91 alloys were also effectively refined. As a result, the mechanical properties at room temperature(RT) for the Sccontaining as-cast AZ91 alloys were effectively improved. In addition, adding 0.15–0.45 wt%Sc to the AZ91 alloy promoted the formation of the continuous precipitates(CP) during the aging treatment in spite of that the formation of the discontinuous precipitates(DP) was simultaneously suppressed. Accordingly, the Sc-containing as-aged AZ91 alloys obtained the relatively higher mechanical properties at RT than the as-aged AZ91 alloy.  相似文献   

18.
采用普通铸造法制备含高体积分数准晶相的Mg-Zn-Y(MZY)准晶中间合金。经SEM,EDS、XRD检测和摩擦磨损试验,研究MZY准晶颗粒加入量对AZ91基体合金微观组织及耐磨性能的影响。结果表明:MZY准晶颗粒可以明显细化AZ91合金的铸态组织,且骨骼状连续网状分布的β-Mg17Al12相断裂为弥散的岛状,合金的铸态组织中除α-Mg相、β-Mg17Al12相外还出现弥散分布在晶界处的高温稳定的Mg3Zn6Y准晶相;在不同载荷条件下,添加质量分数为6%的MZY准晶合金试样的摩擦因数由0.68减小至0.26,在100 N载荷下干摩擦30 min,其质量磨损量仅为基体合金质量的46.2%,磨损机理由基体的黏着摩擦转变为磨粒摩擦。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号