首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对现有单通道语音增强算法及传统波束形成算法的局限性,提出了一种基于双元麦克风线性阵的语音增强方法. 首先利用离线设计好的优化权值对输入信号进行加权求和以实现波束形成,然后结合一种新的噪声幅度谱估计方法,采用改进的幅度谱减法进一步增强语音信号. 仿真实验表明该方法简单易行并取得了较好的语音增强效果.  相似文献   

2.
基于广义旁瓣抵消器(generalized sidelobe canceller,GSC)算法的麦克风阵列语音增强技术已得到广泛研究,但由于其通常需传统的声源定位方法提供声源方位,语音信号信噪比(SNR)低时声源定位精度将明显下降并影响到语音增强效果.提出了一种新的麦克风阵列语音增强方法,该方法在GSC中引入可调波束形成器估计声源方位以抑制背景噪声影响.不同类型背景噪声下的实验室语音增强结果表明了该方法的有效性.  相似文献   

3.
针对小体积应用场合下的语音增强,提出了一种基于等边三角形结构的麦克风阵列与Wiener后置滤波相结合,并由VAD作为控制单元的语音增强方法。该方法克服了自适应零限波束形成只能抑制空间相干噪声的缺点,并得到可在二维平面上旋转的波束主瓣。通过仿真和真实环境的实验,证明算法能够显著地提高输入语音信噪比,且适用于多种噪声场。  相似文献   

4.
单通道语音增强算法自上个世纪60年代已来有了长足的发展,但由于时频域处理的局限性,目前现有的单通道语音增强算法无法有效抑制背景噪声中的突发噪声成分。突发噪声通常表现为短时、能量强、时频域有纹理特征的噪声,在参数上无法和语音进行有效区分。但对于背景噪声中的突发噪声,其在空间上通常是具有方向性。因此,本文提出了一种联合空间和时频域的语音增强系统。即在语音采集的前端使用GSC麦克风阵列形成波束,使主瓣对准期望语音信号、旁瓣对准突发噪声从而从空间上抑制突发噪声,然后对采集到的语音信号进行时频域语音增强处理。本文选取MMSE-LSA作为时频域的处理算法,因其在保留语音的可懂度、自然度方面有突出的性能。实验表明,该系统可以有效地抑制含有突发噪声的背景噪声。  相似文献   

5.
文章就语音增强的发展历程以及面向藏语语音的研究现状和语音特征作了介绍和分析,并选择藏语拉萨话作为语音增强实验的语种.文章选择经典的谱减法作为语音增强方法,并介绍了谱减法原理,同时设计实验方案,实验语料使用纯净语音和噪音混合成的带噪语音,按照不同信噪比进行语音测试,得到了大量数据结果.在分析结果的基础上得出结论:使用谱减法能够明显提升语音质量,提升效果随着噪音语音相关度的多少而变化.  相似文献   

6.
基于帧间重叠谱减法的语音增强算法及实现   总被引:4,自引:0,他引:4       下载免费PDF全文
采用短时谱分析,合成技术,对含噪语音进行帧间重叠谱减法消除噪音,这种算法符合语音特性连续变化的特点。实验证明,该方法有效去除了噪声干扰,得到了增强语音,保证了话音的可懂度和自然度不受损失。  相似文献   

7.
提出一种相干滤波器与广义旁瓣相消器结合(GSC)的二元麦克风阵列语音增强算法.将基于噪声谱估计的单通道相干滤波器作为广义旁瓣相消器的后置滤波器,充分利用阵元间蕴含的信号进行噪音抑制,克服经典结合算法无法使用基于噪声谱估计的相干滤波器的缺点.计算机仿真实验表明,该算法明显优于小阵列广义旁瓣相消算法和基于相位差的算法.  相似文献   

8.
提出一种将改进EMD与麦克风阵列MVDR自适应波束形成相结合的语音增强方法。该方法利用互相关系数阈值法去除将EMD算法分解后的的虚假IMF分量,结合各阶IMF分量的自相关函数特性准确获取信号与噪声的主导IMF分量分界点,然后对所有噪声主导的IMF分量进行小波阈值去噪,接着将所有剩余IMF分量进行MVDR波束形成获得增强语音信号。改进EMD算法避免了在高信噪比条件下的信号失真,与MVDR波束形成相结合,满足了MVDR窄带特性要求,增强了麦克风阵列抗干扰能力。实验结果证明了方法的有效性。  相似文献   

9.
对现有的基于自动波束形成的麦克风阵列语音信号增强算法提出了改进.将各个麦克风采集到的信号利用ABF(自适应波束形成)进行延时补偿并求和,消除信号中弱相干和不相干噪声;再利用信号子空间逼近的方法进一步去除残留噪声.仿真试验结果表明:把自适应波束形成技术和信号子空间逼近的方法结合起来,能够得到良好的去噪效果.  相似文献   

10.
麦克风阵列的几何结构形成了麦克风阵列工作时性能的基本限制,是影响噪声源识别系统性能的关键因素之一.对十字阵(37阵元)、六角阵(37阵元)、矩形阵(36阵元)在均匀加权时方向性、角度分辨率等性能进行仿真定量对比研究:十字阵具有最好的方向性为71.6 dB,六角阵具有最好的空间对称性且能抑制栅瓣;阵元数目变化时主瓣宽度的对比,表明阵元数大于100时增加阵元对改善角度分辨率作用不大;主瓣宽度与频率关系,显示随频率增加3种阵列输出信号畸变程度基本相同.  相似文献   

11.
基于小波变换的传声器阵列语音增强方法   总被引:5,自引:0,他引:5  
针对现有的基于传声器阵列语音增强算法的局限性,并考虑到入耳听觉感知模型,提出一种将延迟-求和波束形成技术和小波变换技术相结合进行语音增强的方法,该方法首先利用延迟-求和波束形成技术将阵列中各个传声器接收到的信号进行时间延迟补偿,并对各通道信号相加-平均,消除一部分不相干或弱相干噪声;然后再利用小波变换技术进一步去除噪声,计算机模拟结果表明,该方法具有良好的消噪能力。  相似文献   

12.
用于语音识别的鲁棒自适应麦克风阵列算法   总被引:1,自引:0,他引:1  
对现实环境中存在的混响以及非平稳干扰语音信源等因素导致的算法性能下降,提出了一种用于语音识别的鲁棒旁瓣对消算法。讨论了旁瓣对消算法在自适应麦克风阵列中的应用,分析了算法在不同的混响条件下、不同的干扰源的噪声抑制能力。该算法通过分帧处理将输入信号划分为一系列短时平稳的信号片段。根据当前帧的信噪比决定自适应滤波器的权系数更新方式。采用一定的范数约束来限制自适应滤波器权系数的误调整。实验结果表明该麦克风阵列在混响的现实环境中能够有效抑制平稳噪声源和交叠谈话背景干扰,提高了语音识别器的抗噪性能。  相似文献   

13.
基于麦克风阵列的声源定位研究   总被引:8,自引:0,他引:8  
基于麦克风阵列的声源定位是有效声源提取的前提和基础,其技术在多媒体通信中得到了广泛的应用.讨论了基于麦克风均匀线阵和均匀圆阵的声源定位方法,并进行了仿真,其结果表明这两种模型均能有效地提取出声源的位置.并给出了算法的硬件实现的原理框图。  相似文献   

14.
0IntroductionUnder the condition of existing competing speakers,the performance of a speech recognition systemdegradesseriously.Withits capabilityto provide hands-free acqui-sition of speech and directional discrimination,micro-phone array has become widely used in many robust ASRfront-end[1-3].Adaptive beamforming realizes notches in the direc-tions of interferences in current working environment byadapting its weights according to some optimum criteri-on[4].Adaptive microphone array can re…  相似文献   

15.
针对在非平稳和多种噪声并存的语音增强算法抑制噪声能力有限的问题,提出基于最小跟踪噪声功率谱估计的相干滤波与广义旁瓣抵消的麦克风小阵语音增强算法。该方法先利用最小跟踪噪声功率谱估计的相干滤波抑制弱相关噪声,再结合广义旁瓣抵消与端点检测抑制强相关噪声。实验结果表明,方法更加有效地抑制噪声的影响;并提高了语音的可懂度。  相似文献   

16.
考虑到传统单通道语音增强算法对噪声抑制的局限性,本文采用由两个微型麦克风阵列组成的双微阵列,利用该阵列空间结构的时空域特性对含噪语音进行处理,提出了一种适用于双微阵列的语音增强算法。该增强算法是将各通道采集到的带噪语音信号先使用对数最小均方误差(Logarithmic Minimunm Mean Square Error,LogMMSE)提升其信噪比,然后利用频域宽带最小方差无畸变响应(MVDR)通过对目标声源信号的获取,保留目标声源方向的信号并抑制其他方向的信号干扰,最后通过一个改进可懂度结合改进最小控制递归平均(Improved Minimum Controlled Recursive Average Algorithm,IMCRA)噪声估计的维纳滤波器来去除噪声残留提升语音质量。仿真实验结果表明,相比传统的单通道语音增强算法,该算法具有良好的噪声抑制性能。  相似文献   

17.
基于减谱法的语音增强和噪声消除的研究   总被引:8,自引:0,他引:8  
介绍了减谱法进行语音增强的一种方法 .分别对语音和噪声信号进行傅立叶变换 ,求得它们的频谱 ,相减得到的是去噪后语音的频谱 ,再进行傅立叶反变换 ,即可得到增强语言信号 ,从而有效地抑制了噪声  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号