首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
MnO–SiO2二元系作为废旧锂离子电池、海洋锰结核还原熔炼过程中的基础渣型,测定有价金属(如镍)在渣中的溶解度、活度及活度系数热力学数据十分必要。为此,本文测定了温度1623 K、氧分压10?7,10?6,和10?5 Pa时SiO2饱和的MnO–SiO2渣和Al2O3饱和的MnO–SiO2–Al2O3渣中NiO的溶解度和活度系数。结果表明:在试验条件下,镍在MnO–SiO2渣和MnO–SiO2–Al2O3渣中主要以NiO形式存在,且渣中NiO的溶解度随着氧分压增加而增加;向MnO–SiO2渣中加入Al2O3可以降低渣中镍的溶解度,增加NiO的活度系数。此外,SiO2饱和的MnO–SiO2渣和Al2O3饱和的MnO–SiO2–Al2O3渣中NiO的活度系数(γNiO,以纯固体NiO为参考态)可分别按如下公式计算:γNiO = 8.58w(NiO) + 3.18; γNiO=11.06w(NiO) + 4.07, 其中,w(NiO)为渣中NiO的质量分数。  相似文献   

2.
The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking  process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18wt%Cr?8wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr2O3-concentrated regions existed within the inclusion before soaking, but more and more Cr2O3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-point-phase MnO–Cr2O3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy (CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al2O3–SiO2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr2O3 inclusions.  相似文献   

3.
The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O2-Al2O3-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O2in slag to avoid the loss of Mn due to the reaction;this process caused both Al2O3in slag and Si in steel to increase while Si O2and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al2O3-Mg O→Mg O→Mn O-Ca O-Al2O3-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.  相似文献   

4.
The equilibrium reaction between CaO—Al2O3—SiO2—MgO slag and 28MnCr5 molten steel was calculated to obtain the suitable slag composition which is effective for decreasing the oxygen content in molten steel. The dissolved oxygen content [O] in molten steel under different top slag conditions was calculated using a thermodynamic model and was measured using an electromotive force method in slag–steel equilibrium experiments at 1873 K. The relations among [O], the total oxygen content (T.O), and the composition of the slag were investigated. The experimental results show that both [O] and T.O decrease with decreasing SiO2 content of the slag and exhibit different trends with the changes in the CaO/Al2O3 mass ratio of the slag. Increasing the CaO/Al2O3 mass ratio results in a decrease in [O] and an increase in T.O. To ensure that T.O ≤ 20 ppm and [O] ≤ 10 ppm, the SiO2 content should be controlled to <5wt%, and the CaO/Al2O3 mass ratio should be in the range from 1.2 to 1.6.  相似文献   

5.
The addition of silica to steelmaking slags to decrease the binary basicity can promote phosphate enrichment in quenched slag samples. In this study, we experimentally investigated phosphate enrichment behavior in CaO–SiO2–FeO–Fe2O3–P2O5 slags with a P2O5 content of 5.00% and the binary basicity B ranging from 1.0 to 2.0, where the (%FetO)/(%CaO) mass percentage ratio was maintained at 0.955. The experimental results are explained by the defined enrichment degree RC2S-C3P of solid solution 2CaO·SiO2–3CaO·P2O5 (C2S–C3P), where RC2S-C3P is a component of the developed ion and molecule coexistence theory (IMCT)–Ni model for calculating the mass action concentrations Ni of structural units in the slags on the basis of the IMCT. The asymmetrically inverse V-shaped relation between phosphate enrichment and binary basicity B was observed to be correlated in the slags under applied two-stage cooling conditions. The maximum content of P2O5 in the C2S–C3P solid solution reached approximately 30.0% when the binary basicity B was controlled at 1.3.  相似文献   

6.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B=(%CaO)/(%SiO2)=1, where B is the basicity. We observed that controlling the slag composition at approximately B=1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

7.
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5–5.0; 20wt%–25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (CS) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (LS). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5–5.0 and the Al2O3 content in the range of 20wt%–25wt% has high activity of CaO (aCaO), with no deterioration of CS compared with conventional desulfurization slag. The measured LS between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5–5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.  相似文献   

8.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni–Co–Fe-based end-of-life(EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO–Al_2O_3–SiO_2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO–Al_2O_3–SiO_2 slag. The activity coefficients of NiO and CoO in CaO–Al_2O_3–SiO_2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B =(%CaO)/(%SiO_2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

9.
To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.  相似文献   

10.
The foaming indexes of a group of refining slag were measured. The refining slag with better foaming ability was chosen,its composition (mass frachon in %) is CaO, 53.25, SiO2, 17.75, MgO, 9; Al2O3, 15 and CaF2, 5. The relationship between slag foaming index and physical properties of the slag was obtained by dimensional analysis, and the expression indicates that viscosity of slag is the most important factor which influences foaming index. The influence sequence of slap composition on foaming index was also obtained as follows: CaF2→MgO→Al2O3→ B (CaO/SiO2).  相似文献   

11.
The aim of the present study was to fabricate Fe–TiC–Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2–3C and 3TiO2–4Al–3C–xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2–3C mixture. However, ferrite–Fe3C–TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2–4Al–3C mixture. The addition of Fe to the TiO2–4Al–3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.  相似文献   

12.
高炉渣系各组元活度对高炉冶炼和产品质量具有重要的影响作用. 基于分子-离子共存理论,建立CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型;结合试验测定值对其进行验证与修正,最终建立了修正的CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型;同时,依据模型计算结果探究R(w(CaO)/w(SiO2)),w(MgO)/w(Al2O3)和w(Al2O3)对Al2O3活度的影响. 研究结果表明:修正后的CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型具有较高的预测精度,能够很好地预测熔渣Al2O3活度;当w(MgO)/w(Al2O3)=0.40,w(Al2O3)=20%时,随着R增加,Al2O3活度逐渐减小;当R=1.25,w(Al2O3)=20%时,随着w(MgO)/w(Al2O3)增加,Al2O3活度逐渐减小;当w(MgO)/w(Al2O3)=0.40,R=1.25时,随着w(Al2O3)增加,Al2O3活度逐渐增大.  相似文献   

13.
Six compositions with different ratio of β-Sialon/Al2O3 were synthesized from Al2O3, Si3N4 and SiO2 by sintering with 3%Y2O3(mass fraction) as addition under the cover with powders of SiC+C and at nitrogen atmosphere. Theeffects of atmosphere, sintering temperature and composition on the sintering behavior were studied. The results showedthat the composites reached the best sintering behavior with the highest density about 92% at 1 650℃ under the weakreduction atmosphere. Finally the relative density of diphasic β-Sialon and β-Sialon/Al2O3 composites were studied andpredicted using ANN (Artificial Neural Networks) method and the results were experimental examined by fore randomsamples.  相似文献   

14.
As a key step in secondary refining, the deoxidation process in clean stainless steel production is widely researched by many scholars. In this study, vacuum oxygen decarburization (VOD) deoxidation refining in a 40-t electric arc furnace + VOD + ingot casting process was analyzed and optimized on the basis of Al deoxidation of stainless steel and thermodynamic equilibrium reactions between the slag and steel. Under good stirring conditions in VOD, the deoxidation reaction reaches equilibrium rapidly, and the oxygen activity in the bulk steel is controlled by the slag composition and Al content. A basicity of 3–5 and an Al content greater than 0.015wt% in the melt resulted in an oxygen content less than 0.0006wt%. In addition, the dissolved oxygen content decreased slightly when the Al content in the steel was greater than 0.02wt%. Because of the equilibrium of the Si–O reaction between the slag and steel, the activity of SiO2 will increase while the Si content increases; thus, the Si content should be lowered to enable the formation of a high-basicity slag. A high-basicity, low-Al2O3 slag and an increased Si content will reduce the Al consumption caused by SiO2 reduction.  相似文献   

15.
The thermodynamic behavior of manganese and phosphorus between liquid iron and CaO-MgO-SiO2-Al2O3-FetO-MnO-P2O5 ladle slag system was addressed by investigating the thermodynamic equilibria between liquid iron containing Mn and P and the ladle slag at 1873 K. The Mn distribution ratio LMn increases with increasing FetO content and decreasing the basicity ((%CaO + %MgO)/(%SiO2 + %Al2O3 + %P2O5)) in slag, while the P distribution ratio Lp seems to be increased as FetO content and the basicity increases. The values of LMn and Lp decrease by the addition of Al2O3 into slag. The expression of the dependence of LMn and Lp on the basicity and FetO content in slag was obtained.  相似文献   

16.
The recovery of metal oxides from stainless steel dust using C (graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr (L'Crm/s) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO:SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L'Crm/s, and a linear relationship between L'Crm/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.  相似文献   

17.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

18.
Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents Al2O3 or Na2O into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower[Si] heat is much higher than that in the higher[Si] heat. It is concluded that both fluxing agents and lower[Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Furthermore, the addition of Na2O could also prevent rephosphorization at the end of the experiment.  相似文献   

19.
The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH (Ruhrstahl-Hereaeus) slags. The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite, MgO-ZrO2 composite, and MgO-MgAl2O4-ZrO2 composite. On the basis of the microstructural analysis and mechanisms calculations, the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure, which helps protect the high activity of ZrO2. When in contact with the slag, ZrO2 reacts with CaO to form the stable phase CaZrO3, which protects MgAl2O4 against corrosion, thereby enhancing the corrosion resistance of the composite.  相似文献   

20.
Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying (TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni3Al, Al2O3, and NiO. The Ni–Al phase and a small amount of Al2O3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and NiAl in addition to a small amount of Al2O3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, NiAl, and Ni3Al in addition to a small amount of Al and Al2O3, and NiAl and Ni3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号