首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性.  相似文献   

3.
为了解决LVQ神经网络在应用时对初始权值敏感的问题,基于粒子群算法提出PSO—LVQ算法。PSO—LVQ算法利用PSO为LVQ神经网络寻找最适应的初始权值。算法的适应度函数定义为初始权值和输入样本集的平均聚集距离与最大聚集距离的变化率。该定义将输入样本集的数据分布特征作为PSO优化LVQ初始权值的依据。利用PSO-LVQ算法对乳腺癌进行诊断实验,并与其它相关算法进行比较。研究结果表明:PSO—LVQ神经网络算法在收敛性和分类准确率上都有改善和提升,乳腺癌诊断平均准确率可达95.94203%,最高可达100%,适用于乳腺癌的辅助诊断。  相似文献   

4.
5.
基于微粒群算法的叶片曲面形状误差评定   总被引:3,自引:0,他引:3  
以涡轮机叶片型面的形状误差评定为例,利用NURBS曲线插值构造出截面设计曲线,提出一种四控制点法构造与测量点最近的NURBS截面设计曲线,建立了计算曲面形状误差的数学模型,并应用微粒群算法计算测量点到曲面的最短距离,实现了曲面形状误差的评定。通过与传统的BFGS和DFP优化方法的计算结果进行比较,表明该方法能快速准确地计算叶片曲面的形状误差。  相似文献   

6.
边坡稳定性分析与评价是边坡工程的核心内容,具有高度非线性和不确定性特征。首先,选取了多个边坡工程实例构成学习样本集,以土体重度、内摩擦角、粘聚力、坡角、坡高、孔隙比六个主要影响因素作为土坡稳定性的评价判别指标;然后,采用改进的粒子群算法优化BP神经网络模型,将网络权值和阈值粒子化,通过引入粒子群进化度和粒子群聚合度实现惯性权重的动态变化,利用粒子群算法的全局搜索性实现网络权值和阈值的更新,从而增强算法对非线性问题的处理能力,加快了收敛速度;最后,通过与其它边坡稳定性评价算法进行比较分析,表明了本文研究算法的可行性与合理性。  相似文献   

7.
为了提高神经网络集成中个体网络的差异性,并减少将集成用于预测时的计算量,本文结合粒子群优化算法和个体网络的并行学习机制,提出了一种基于粒子群优化的并行学习神经网络集成构造方法。实验表明,和传统的集成构造方法相比,该构造方法具有比较好的性能。  相似文献   

8.
短时交通流量具有非线性、随机性等特点,如何准确地进行短时交通流量预测,是智能交通系统研究的一项关键内容。传统的预测模型不能实时反映短时交通流量变化特点,同时BP神经网络的交通流量预测存在收敛速度缓慢、易陷入局部极值、预测精度低等缺点。为了提高短时交通流量预测精度,提出了一种基于改进粒子群算法(IPSO)优化BP神经网络的复合预测模型,引入相对误差指标作为预测模型的评价指标,并利用实测的道路短时交通流数据对所构建的预测模型进行验证。结果表明,所提出的预测模型在短时间内寻出全局最优解,具有较好的预测精度,提高了短时交通流量预测的准确性和可靠性。  相似文献   

9.
In order to improve the accuracy of using visual methods to detect the quality of fluff fabrics, based on the previous research, this paper proposes a method of...  相似文献   

10.
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.  相似文献   

11.
基于粒子群优化的BP神经网络预测方法及其应用研究   总被引:1,自引:0,他引:1  
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度.  相似文献   

12.
提出了一种基于BP神经网络的产品造型设计方法,采用计算机建模、模糊集理论和语义差异方法进行模拟研究。研究结果对采用BP神经网络建立产品造型参数和形容词的形象之间关系进行了分析。依据设计要素、产品造型和形状规则建造一个新的数据库连接,设计师可以生成产品图像不同的三维模型的基本的设计元素和形状规则。因此,改变参数的配置得到可接受和可修改产品的形状图像,运用这种方法所设计的产品可以更密切地配合消费者的需求。  相似文献   

13.
将粒子群优化算法用于前向神经网络权值的学习算法研究,以神经网络学习算法研究的典型问题之一的XOR问题作为研究实例,针对算法的收敛性、学习速度以及算法对初值的鲁棒性等性能指标,分别对标准的PSO算法、改进的PSO算法以及BP算法及其带动量项的BP算法进行了比较研究.研究表明,PSO算法在前向神经网络权值的学习算法中其所有的性能指标均优于传统的BP算法,PSO算法在神经网络的应用中具有广阔的前景.  相似文献   

14.
针对RBF网络的建模问题,设计了基于双层网络的建模方法。第一层网络采用随机方法确定了隐层单元数,并利用并行PSO算法对网络进行初步训练,第二层网络采用了主从粒子群的方式,借鉴了遗传交叉的思想,对第一个网络的最优解进行了再训练以提高网络的训练精度。从对非线性系统的仿真结果看,该方法最终确定的隐层单元数比较少,与RBF网络相比有着一定的优越性,而且优于单层并行PSO算法的RBF网络。  相似文献   

15.
木材干燥是一个复杂的非线性系统,由于木材结构复杂且具有多样性和变异性,很难建立一个理想的符合木材干燥过程的数学模型.提出了利用粒子群算法的全局寻优能力优化动态递归网络连接权值系数的方法,对木材干燥动态建模.仿真结果表明:粒子群优化BP算法建立木材干燥动态模型提高了期望误差精度和收敛速度,避免了BP算法陷入局部极小值,具有较好的预测精度.  相似文献   

16.
岩爆是典型高地应力区主要地质灾害之一,其预测理论和发生机制的研究目前并不成熟.本文通过选择合适的影响岩爆程度的主要因素,应用BP神经网络对岩爆样本进行训练并利用预测样本进行检验,由于BP神经网络的初始权值和阀值对网络学习效率和预测结果有影响,因此其对检验样本的预测结果往往不够理想.利用粒子群算法(PSO)对BP网络的初始权值和阀值进行优化,将改进后的BP神经网络算法应用于预测,预测的结果优于BP神经网络.表明利用PSO-BP神经网络算法对实际工程中的岩爆进行预测是可行的.  相似文献   

17.
基于粒子群优化算法的双代号网络进度计划图的绘制   总被引:2,自引:0,他引:2  
为了解决双代号网络图绘制过程中布局优化比较困难、算法复杂的问题,将粒子群优化算法引入到双代号网络图的优化中.以工序交叉最少为自适应度函数,通过建立网络图布局优化模型,在确定结点x坐标后,优化结点y坐标的位置,实现双代号网络图绘制布局优化.基于此模型,用VC#.NET编制了相应的双代号网络绘制程序,并以实际工程对该算法进行了验证  相似文献   

18.
针对网络安全态势感知中态势要素获取困难问题,给出一种基于粒子群优化的网络安全态势要素获取模型.在获取模型中,引入模糊技术对输入的历史态势要素集进行模糊化预处理后,转化为模糊逻辑规则,映射到神经网络层与层之间,以提高神经网络的学习能力.利用粒子群优化算法优化神经网络的连接权以提高神经网络的学习精度和速度.仿真实验结果表明,该模型是一种有效可行的态势要素提取技术,并具有较好的泛化能力.  相似文献   

19.
认识和掌握贝叶斯网络架构是数据求索和知识创新范畴的主要探讨方式之一,当处在网络购架寻觅范围较广的条件下,过去的二值粒子组合改良计算方法时常表现出聚拢速率低,很可能滑入局部范围取优、认识和掌握精准度较低的劣势.在以往二值粒子组合改进计算方法的前提下,依托互信息粒子组合计算方法的初期化过程,减小计算方法的寻觅范围,并且设置新型的演变模型取代以往的演变方程,从而使改良后的计算方法拥有较大的求优功能.选取ASIA网络系统当作模仿样板,再和以往计算方法相比,最终说明改进计算方法可以利用不多的重复换代过程寻觅到极优的方程解,而且总体上不会增添计算过程的繁琐程度.  相似文献   

20.
基于微粒群算法的复杂曲面轮廓度误差计算   总被引:2,自引:0,他引:2  
针对复杂曲面轮廓度误差计算的数学模型比较复杂,并且难以用传统数值优化方法求解这一问题,提出了一种基于微粒群算法(PSO)并结合等参数线区域来计算复杂曲面轮廓度误差的方法.根据UNRBS曲面的u和v参数构造等参数线区域,通过微粒群算法在等参数线区域内搜索与测量点距离最近的点,实现了复杂曲面轮廓度误差的计算.实验结果表明,该方法搜索速度快,计算精度高,用于求解曲面轮廓度误差是行之有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号