共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性. 相似文献
3.
针对传统的神经网络训练算法收敛速度慢和泛化性能低的缺陷,提出一种新的自适应粒子群优化算法用于神经网络的训练.该算法通过改进自适应搜索策略以提高网络泛化性能,并结合Ionosphere雷达信号分类数据集进行仿真测试.研究结果表明:基于自适应粒子群优化算法训练的神经网络在分类准确率和分类误差上明显优于传统的BP算法,且很好地提高了网络泛化能力和优化效果. 相似文献
4.
近年来出现的粒子群优化算法与神经网络相结合,可以有效地提升全局搜索最优的能力,同时也提升了收敛的速度。将粒子群算法与神经网络结合应用于英语教学,通过对提取的学生翻译样本进行学习训练,用训练好的粒子群优化的神经网络模型对学生的英语翻译能力进行正确程度的分析,帮助教师估计学生的翻译能力水平,为下一步的教学提供参考。深入从粒子群优化算法的数学模型和算法流程何人工神经网络模型的基本原理出发,提出了学习能力分析模型,确定该模型的神经网络的拓扑结构和隐藏层的节点数。案例应用结果表明,该研究模型可以促进英语翻译教学质量的提高和教学相长。 相似文献
5.
基于微粒群算法的叶片曲面形状误差评定 总被引:3,自引:0,他引:3
以涡轮机叶片型面的形状误差评定为例,利用NURBS曲线插值构造出截面设计曲线,提出一种四控制点法构造与测量点最近的NURBS截面设计曲线,建立了计算曲面形状误差的数学模型,并应用微粒群算法计算测量点到曲面的最短距离,实现了曲面形状误差的评定。通过与传统的BFGS和DFP优化方法的计算结果进行比较,表明该方法能快速准确地计算叶片曲面的形状误差。 相似文献
6.
7.
再制造工件多元异质材料特性及工艺参数对疲劳寿命的影响,使得传统的疲劳寿命计算方法无法适用于再制造工件,针对此问题建立了再制造工件疲劳损伤预测修正模型,并通过疲劳试验分析了不同熔覆厚度和宽度条件下对试件疲劳强度和可靠性寿命的影响,同时获取了寿命预测修正系数;进而采用二阶粒子群算法优化的反向传播(back propagation,BP)神经网络,构建了材料性能参数、应力水平及再制造工艺影响因素与疲劳寿命之间的关系模型,针对再制造工件进行寿命预测。结果表明,神经网络的预测结果与试验数据相符,优于数值计算预测模型,为实现再制造工件的疲劳寿命预测提供了一种新的方法和手段。 相似文献
8.
为了解决LVQ神经网络在应用时对初始权值敏感的问题,基于粒子群算法提出PSO—LVQ算法。PSO—LVQ算法利用PSO为LVQ神经网络寻找最适应的初始权值。算法的适应度函数定义为初始权值和输入样本集的平均聚集距离与最大聚集距离的变化率。该定义将输入样本集的数据分布特征作为PSO优化LVQ初始权值的依据。利用PSO-LVQ算法对乳腺癌进行诊断实验,并与其它相关算法进行比较。研究结果表明:PSO—LVQ神经网络算法在收敛性和分类准确率上都有改善和提升,乳腺癌诊断平均准确率可达95.94203%,最高可达100%,适用于乳腺癌的辅助诊断。 相似文献
9.
边坡稳定性分析与评价是边坡工程的核心内容,具有高度非线性和不确定性特征。首先,选取了多个边坡工程实例构成学习样本集,以土体重度、内摩擦角、粘聚力、坡角、坡高、孔隙比六个主要影响因素作为土坡稳定性的评价判别指标;然后,采用改进的粒子群算法优化BP神经网络模型,将网络权值和阈值粒子化,通过引入粒子群进化度和粒子群聚合度实现惯性权重的动态变化,利用粒子群算法的全局搜索性实现网络权值和阈值的更新,从而增强算法对非线性问题的处理能力,加快了收敛速度;最后,通过与其它边坡稳定性评价算法进行比较分析,表明了本文研究算法的可行性与合理性。 相似文献
10.
11.
为解决空燃比传输延迟的问题,该文提出一种基于自适应扩展粒子群优化的空燃比预测控制策略.采用多粒子策略来提高算法的全局收敛性,通过对控制参数的自适应调整来加快算法的收敛速度.在多粒子策略中,每个粒子的更新受更多其他粒子的影响;在自适应策略中,控制参数随着迭代次数的增加而逐渐减小.以HQ495发动机为实验对象,仿真结果表明在节气门小范围变化时,空燃比误差低于1%;在节气门大范围变化时,空燃比误差低于2%.该方法实现了对空燃比的精确预测控制,有效地改善了汽油机过渡工况排放性能. 相似文献
12.
短时交通流量具有非线性、随机性等特点,如何准确地进行短时交通流量预测,是智能交通系统研究的一项关键内容。传统的预测模型不能实时反映短时交通流量变化特点,同时BP神经网络的交通流量预测存在收敛速度缓慢、易陷入局部极值、预测精度低等缺点。为了提高短时交通流量预测精度,提出了一种基于改进粒子群算法(IPSO)优化BP神经网络的复合预测模型,引入相对误差指标作为预测模型的评价指标,并利用实测的道路短时交通流数据对所构建的预测模型进行验证。结果表明,所提出的预测模型在短时间内寻出全局最优解,具有较好的预测精度,提高了短时交通流量预测的准确性和可靠性。 相似文献
13.
本文提出一种粒子群优化小波神经网络的新方法.先采用基于梯度下降的误差反传算法调整小波神经网络参数,再使用粒子群算法修正,从而建立了粒子群优化的高维小波神经网络,并将该方法用于构建热连轧产品质量模型.仿真结果表明,此模型提高了预测精度和收敛速度. 相似文献
14.
Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN. 相似文献
15.
提出了一种基于BP神经网络的产品造型设计方法,采用计算机建模、模糊集理论和语义差异方法进行模拟研究。研究结果对采用BP神经网络建立产品造型参数和形容词的形象之间关系进行了分析。依据设计要素、产品造型和形状规则建造一个新的数据库连接,设计师可以生成产品图像不同的三维模型的基本的设计元素和形状规则。因此,改变参数的配置得到可接受和可修改产品的形状图像,运用这种方法所设计的产品可以更密切地配合消费者的需求。 相似文献
16.
基于BP神经网络的经济预测方法 总被引:18,自引:0,他引:18
欧邦才 《南京工程学院学报(自然科学版)》2004,2(2):11-14
在经济分析中 ,通常采用回归分析方法建立数学模型对一个经济系统进行拟合 ,进而对相关经济变量进行预测 .利用人工神经网络 (ANN)的自学习、自适应和非线性的特点 ,可通过建立经济系统的评价指标体系 ,并把经济变量数据归一化处理 ,然后送入BP神经网络中训练得出相应参数再进行预测 ,经过检验得出令人满意的结果 . 相似文献
17.
建立了一个由7个一级指标和32个二级指标构成的系统评价体系.采用模糊层次分析法(FAHP)并结合专家问卷数据得到初始指标权重,进而生成30组前馈神经网络(BPNN)训练样本和5组校验样本.基于训练样本和前馈神经网络构建出大型国际工程项目财务风险控制体系的非线性映射关系模型,并通过样本校验.最后,以某大型央企在沙特的总承包项目为例,进行了评价体系的实际应用和案例分析. 相似文献
18.
根据灰色神经网络的参数随机选择类似于粒子群算法中的粒子初始空间位置,采用改进粒子群算法代替梯度修正法,对网络参数进行了处理,并通过寻找粒子群算法中的最优个体,建立了基于改进粒子群算法的灰色神经网络,提高了预测模型的稳健性和精度.通过解决短期订货量问题,与反向传播(BP)神经网络、灰色神经网络、没有改进的粒子群灰色神经网络算法和基于遗传算法的灰色神经网络等方法进行了比较.分析结果表明,基于改进粒子群算法的灰色神经网络计算更为方便,并具有更好的逼近能力和预测精度.为优化网络模型参数提供了一种新方法,并拓展了预测模型的研究思路. 相似文献
19.
基于粒子群优化的BP神经网络预测方法及其应用研究 总被引:1,自引:0,他引:1
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度. 相似文献
20.
将粒子群优化算法用于前向神经网络权值的学习算法研究,以神经网络学习算法研究的典型问题之一的XOR问题作为研究实例,针对算法的收敛性、学习速度以及算法对初值的鲁棒性等性能指标,分别对标准的PSO算法、改进的PSO算法以及BP算法及其带动量项的BP算法进行了比较研究.研究表明,PSO算法在前向神经网络权值的学习算法中其所有的性能指标均优于传统的BP算法,PSO算法在神经网络的应用中具有广阔的前景. 相似文献