首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将混有氧化铝(Al2O3)颗粒的有机溶剂浆料均匀涂覆在常规PE隔膜单侧,制成Al2O3陶瓷涂层复合锂离子电池用隔膜.通过扫描电镜(SEM)、热重分析仪(TGA)、万能材料拉伸试验机、电化学工作站和采用该复合隔膜组装成LiFePO4-C体系电池进行充放电循环及热箱测试,对Al2O3陶瓷涂层复合隔膜的微观形貌、力学性能及电化学性能进行研究.结果表明:Al2O3陶瓷涂层复合隔膜能有效提高隔膜的抗拉延伸率、提高隔膜对电解液的吸附性,降低隔膜的界面阻抗;采用此种复合隔膜组装的锂离子电池在55℃下进行0.5 C充放电循环200,容量保持率在95%以上;在150℃热箱测试中具有较高的热稳定性能.  相似文献   

2.
为了研究改性纳米Si O2+有机成膜涂层对混凝土疏水和抗碳化性能的影响,配制了6种改性和未改性纳米Si O2有机成膜复合涂料,测定了涂覆复合涂料后混凝土的表面接触角,确定了涂料中纳米Si O2的最佳添加量。通过测定涂层混凝土的吸水率发现,改性和未改性纳米Si O2可以显著提高涂层混凝土的憎水性,其中改性纳米Si O2的改善幅度更大,同时混凝土的吸水率与其接触角呈一阶线性负相关的关系;通过涂层混凝土的加速碳化试验发现,改性和未改性纳米Si O2可以有效改善涂层混凝土的抗碳化性能,其中改性纳米Si O2的改善效果更好,而且还发现涂层混凝土的疏水能力和抗碳化性能之间存在正相关关系,即表面涂层疏水性能越强,混凝土抗碳化性能越好。  相似文献   

3.
通过在聚乙烯(PE)隔膜上引入三氧化钼(MoO3)和溴化锂(LiBr)涂层制备LiBr/MoO3/PE多功能复合隔膜,采用X射线衍射和扫描电子显微镜对膜的结构和形貌进行表征,并通过循环伏安、电化学阻抗和充放电性能测试等方法研究涂覆修饰层后的LiBr/MoO3/PE隔膜对Li金属负极稳定性和锂硫(Li-S)电池性能的影响.结果表明:LiBr提高了多硫化锂(LiPSs)的溶解度,MoO3层对LiPSs具有化学吸附作用,可提高活性物质S的利用率,并抑制Li-S电池的穿梭效应;以LiBr/MoO3/PE为隔膜的Li-Li对称电池在0.6 mA/cm2的电流密度和1 (mA·h)/cm2的容量下稳定循环时间为1 600 h, Li-S电池在0.2 C下的初始放电比容量可达1 229.2 (mA·h)/g, 500次充放电循环后的比容量为628 (mA·h)/g.  相似文献   

4.
氢氧化镍是重要的电池正极材料,其电化学性能的优劣直接决定电池的放电和存储性能。本文介绍了氢氧化镍的充放电机理,简要综述了球形β-Ni(OH):的改性、纳米Ni(OH)2的开发和掺杂α—Ni(OH)2等的研究现状,并指出鉴于目前β-Ni(OH)2的开发已接近极限,纳米Ni(OH)2及α—Ni(OH)2材料的研究和开发前景将会十分广阔。  相似文献   

5.
为了选择合适的锂离子电池内部隔膜的基材,深入理解采用PE和PP基材料制作隔膜的力学以及电化学特性,基于试验法对PP和PE基薄膜进行了对比研究,结果表明此2种隔膜基础材料均具有极强的耐腐蚀性,在锂离子电池进行充放电工作循环过程中,导致其力学性大幅下降的因素为拉断力产生的蠕变以及疲劳积累.试验结果亦表明:2种基材隔膜的阻抗随着循环的持续时间的增加而增加,并且PP基材制得的隔膜阻抗较之PE基材制得的隔膜阻抗大,最终得到影响锂离子电池内部阻力增加受基材阻抗变化的影响不大.  相似文献   

6.
采用SEM,XRD,TEM以及EIS等检测方法,研究不同过充循环前后MH/Ni电池性能与正负极材料形貌及表面元素的变化.实验结果表明,经正常充放电循环70周后,正极活性物质表面保持良好的球形形貌,而经持续过充电循环相同次数后,因晶格的不可逆膨胀而呈不同程度破裂,储氢合金颗粒并无明显粉化现象,但其表面却覆盖许多绒状或针状物,经能谱检测,该绒状物主要成分为稀土金属的氢氧化物或氧化物.EIS阻抗谱分析表明,电池的欧姆电阻(Rs)、反应电阻(Rt)和Warburg阻抗(Zw)均有不同程度的增加,而界面电容(Ci)则呈逐渐降低趋势,这些均是最终导致电池电化学性能衰减的原因.  相似文献   

7.
在锂离子电池充放电过程中,电解液与电极材料发生反应,形成的固态电解质膜(solid electrolyte interphase,SEI)随着充放电次数的增加而变厚,这将降低电池的循环稳定性。所制备的人工固态电解质膜(a-SEI)可改善锂离子电池的循环稳定性,其主要成分为使用液相法制备的氟化锂(LiF)、氮化亚铜(Cu 3N)纳米颗粒。通过两种不同路径,将两种纳米颗粒先后在锂离子电池正极三元材料LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)电极片表面和活性材料颗粒表面涂覆生成一层a-SEI。使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学阻抗谱(EIS)等材料表征和电化学分析方法,解析a-SEI对锂离子电池循环稳定性的影响。结果表明,NCM811材料表面包覆Cu 3N作为a-SEI的电化学性能最好,相比纯NCM811材料,50周循环后的容量保持率可提升26.5%。  相似文献   

8.
研究填充床电极反应器电催化氧化有机物过程中在不同电解质溶液(酸性(H2SO4),碱性(KOH)和中性(Na2SO4))中的电容特性,分别采用循环伏安(CV)、恒流充放电(GCD)及电化学阻抗(EIS)测试进行电容特性表征、比电容(Cs)计算及相应动力学分析。研究结果表明:在酸性、碱性及中性条件下,填充床电极反应器有机物电催化过程均表现出一定的电容特性,3种电解质溶液电化学反应过程产生比电容由大到小顺序为酸性、碱性、中性;Cs及稳定性由不同介质类型中有机物电催化降解特性及电解质离子与阳极和炭电极间的迁移特性而决定。酸性溶液中较小的液相电阻(Rs,3.01?)使有机物氧化易于进行,而较小的电荷传递电阻(Rct,1.08?)有利于离子/电荷在阳极和炭电极表面的迁移,产生比电容较大,但由于电催化反应强烈,电容循环稳定性差;碱性溶液中Rs(4.22?)和Rct(3.13?)较大,有机物的氧化分解反应显著降低,比电容较小,然而此时电容效应循环性能较好;中性电解质中有机物电催化氧化难易程度介于二者之间(Rs为3.63?),苯酚氧化生成的聚合衍生物使其Rct(3.79?)增大,产生的比电容最小。  相似文献   

9.
改性纳米碳酸钙制备超疏水涂层   总被引:1,自引:0,他引:1  
通过油酸改性纳米碳酸钙颗粒使其表面由亲水性变成了疏水性,改性后的纳米颗粒与低表面能的有机硅树脂聚二甲基硅氧烷经过混合陈化固化过程后在玻璃表面形成超疏水涂层.实验通过改性后的纳米粒子在聚合物介质上构造纳米/微米尺度的结构表面.用接触角测量仪和扫描电镜分别检测涂层的疏水性能和涂层的表面形态.实验结果表面涂层有优异的自清洁能力,平均静态水接触角达160°滚,动角为6°,涂层表面成功构造了纳米/微米的双重粗糙结构.该方法简单有效具有很大的应用前景.  相似文献   

10.
硅材料具有高理论比容量(4 200mAh/g),是最具希望的下一代锂离子电池负极材料之一,但是硅材料巨大的体积效应(300%)和较差的导电性严重影响其电化学性能,阻碍其实际应用.为此,采用海藻酸水凝胶充当固定剂和碳源,将硅纳米颗粒和氧化石墨烯进行组装,制备了硅/还原氧化石墨烯/碳(Si/rGO/C)复合材料,采用粉末X射线衍射(XRD)、拉曼(Raman)光谱、热重分析(TGA)、比表面积测试、扫描电镜(SEM)和透射电镜(TEM)等表征材料的结构、化学组成及形貌,并对材料进行电化学性能测试.结果表明:rGO在复合材料内部构建了分散良好的导电网络,Si纳米颗粒填充在导电网络中并通过碳层牢固地锁定在rGO片层上.rGO与碳层的复合作用有效缓冲了Si纳米颗粒在充放电时的体积变化,并且显著提高了复合材料的导电性,因此,Si/rGO/C复合材料用作锂离子电池负极时表现出优异的电化学性能:以1.0A/g电流密度循环100圈,保持约1 000mAh/g的高可逆比容量以及77.6%的容量保持率.  相似文献   

11.
含氯离子环境下锌铝伪合金涂层的耐蚀性及电化学特性   总被引:1,自引:0,他引:1  
采用盐雾试验和电化学阻抗谱测试技术研究了纯锌和锌铝伪合金涂层在含氯离子环境中的腐蚀行为和电化学特性,通过扫描电镜、X射线物相分析等手段研究了原始涂层及腐蚀后的表面形貌和腐蚀产物的相结构,并对两种涂层的腐蚀机理进行了初步的探讨.随着盐雾时间的增加,纯锌涂层表面逐渐生成疏松多孔的胞状腐蚀产物层,主要腐蚀产物为Zn5(OH)8-Cl2H2O、ZnO和Zn5(CO3)2(OH)6,盐雾试验达到768 h后腐蚀产物层局部区域发生龟裂.锌铝伪合金涂层表面生成致密的腐蚀产物层,主要为Zn5(OH)8Cl2H2O、Zn0.71Al0.29(OH)2(CO3)0.145.xH2O及ZnAl2O4.电化学阻抗谱测试结果表明:随着盐雾时间的延长,两种涂层的电荷转移电阻均逐渐增大,但锌铝伪合金涂层的阻抗要明显大于纯锌涂层,表现出了更好的耐蚀性.  相似文献   

12.
采用溶胶凝胶方法合成Li[Li0.2Mn0.54Ni0.13Co0.13]O2富锂正极材料,通过化学沉积技术在Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒表面沉积La F3颗粒.利用X-射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安及交流阻抗测试系统研究了La F3包覆对材料电化学性能的影响.合成的材料具有α-Na Fe O2层状结构且La F3颗粒均匀包覆在颗粒表面,表面修饰La F3后的样品表现出更高的比容量和更好的倍率性能,电化学性能测试表明La F3表面修饰层有助于缓解电解液中HF对活性材料的腐蚀,降低电荷跃迁电阻(Rct),增强锂离子的扩散能力.  相似文献   

13.
利用一步水热法在镁合金表面构筑了超疏水表面.通过扫描电子显微镜(SEM)、傅里叶变换红外(FT-IR)、X射线光电子能谱分析(XPS)、X射线衍射(XRD)、接触角测量仪对其表面形貌、组成和润湿行为进行了研究,采用电化学极化曲线测试对超疏水涂层的耐腐蚀性能进行了考察.结果表明,一步水热法构筑的镁合金超疏水涂层由微/纳米二级结构组成,最优条件下改性表面接触角和滚动角分别为163.3°和2.8°,具有良好的耐腐蚀性能、耐酸碱性能和稳定性.  相似文献   

14.
为提高含氟聚丙烯酸酯(PFHI)涂层的防腐蚀性能,通过在PFHI溶液中添加石墨烯纳米片(GN),经滴涂并固化后得到了厚度约为180 nm的GN/PFHI复合材料涂层.考察了GN添加量对复合材料涂层表面性质和防腐蚀性能的影响.利用Tafel极化曲线和电化学交流阻抗(EIS)研究了复合材料涂层在 ω(NaCl)=3.5%溶...  相似文献   

15.
以过渡金属乙酸盐和氢氧化锂为原料,采用共沉淀方法制备了锂离子电池富锂正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2并对该材料进行表面包碳.X射线衍射技术(XRD)、扫描电子显微技术(SEM)实验数据表明,该材料具有层状α-NaFeO2 结构.包碳后材料结构没有变化,表面覆盖上一层纳米级别的颗粒.电化学性能测试结果表明该材料包碳后在0.1 C (1 C=180 mA/g),2.0 ~ 4.8 V电位范围内首次放电比容量高达259.0 mAh/g.包碳后首次放电比容量,倍率性能,循环性能均得到提高.采用电化学阻抗谱(EIS)研究包碳前后该材料的传荷阻抗,结果显示碳包覆材料的传荷阻抗明显减小,电子电导率得到提高,从而提高电化学性能.  相似文献   

16.
以石墨板作为阴极基体,聚偏氟乙烯(PVDF)为黏结剂,通过相转化法制备石墨基PVDF涂层电极.改变石墨粉与PVDF的质量比,掺杂不同量的超导炭黑,考察电极的产H2O2性能.利用接触角、扫描电子显微镜(SEM)、N2吸附法和电化学阻抗谱(EIS)对电极表面的微观结构和电化学性能进行了表征.结果表明:石墨粉与PVDF的最佳...  相似文献   

17.
采用涂层法,以含硅聚四氟乙烯为成膜物质,以疏水纳米SiO2为填料,成功制备出含有微/纳米复合结构的超疏水表面.系统研究了疏水纳米SiO2和低表面能物质的含量与涂层表面水接触角的关系.采用接触角测量仪和扫描电子显微镜(SEM)分别对涂层的水接触角和表面形貌进行表征,根据国家标准分别对涂层厚度、硬度和结合力进行测试.在最佳制备条件下,该超疏水涂层水接触角153.5°,涂层厚度22μm,涂层硬度4H,结合力1级.该超疏水涂层具有自清洁及良好的油水分离性能.  相似文献   

18.
纳米TiO2复合涂层的制备及其对LY12铝合金的防护性能影响   总被引:1,自引:0,他引:1  
为了改善铝合金材料的耐腐蚀性能,研究了以正硅酸乙酯(TEOS)为主要原料,加入一定量的-氨丙基三乙氧基硅烷(KH550),并引入纳米TiO2进行复合,以冰乙酸为催化剂,采用溶胶-凝胶法在铝合金基体表面形成复合涂层,并利用氟硅烷进行表面修饰。腐蚀电化学测试分析结果表明,纳米TiO2掺杂制备的复合涂层能够明显的提高铝合金基体的防护性能。并考察了纳米TiO2含量对涂层性能的影响,结果表明,在纳米TiO2质量分数为0.04%时制备的涂层性能最佳,相应的试样在3.5%(质量分数)NaCl溶液中的腐蚀电流密度约为5.965×10 9 A/cm2,而同等实验条件下铝合金基体腐蚀电流密度为7.216×10 5 A/cm2,涂层的存在使腐蚀速率降低了4个数量级,说明涂层对铝合金基体具有显著的防护效果,并且利用扫描电镜(SEM)和接触角测试来考察涂层的致密性和憎水性。  相似文献   

19.
报道了一种基于金纳米粒子/石墨烯修饰玻碳电极的电化学DNA阻抗传感器.首先在玻碳电极表面修饰一层石墨烯,然后通过电化学方法在石墨烯表面沉积一层金纳米粒子,探针DNA(含巯基)通过金硫键连接在金纳米粒子表面.电化学阻抗技术用于DNA传感器的组装表征及其特殊序列DNA的检测.在最佳的实验条件下,传感器响应信号与互补靶DNA浓度的对数在1.0×10-12-1.0×10-7M呈良好线性关系,其线性回归方程:ΔRct(Ω)=1526.6+109.9lgC,相关系数R为0.9970,检出限为3.5×10-13M(S/N=3).此外,该传感器具有良好的选择性,它能识别单碱基错配序列的靶DNA.  相似文献   

20.
为了实现硅纳米颗粒与一维碳纳米纤维的高效复合,提高硅材料作为锂离子电池负极的电化学性能,通过同轴静电纺丝法构造了硅碳复合结构(Si/C-C)的一维纳米纤维作为锂离子电池的负极材料.通过SEM、TEM、XRD和电化学性能测试对其结构、形貌、成分和电化学性能等进行分析.结果表明:Si/C-C纳米复合纤维的平均直径为500~700 nm,硅含量为22%~33%;在100 m A/g的电流密度下,经100圈循环后其可逆容量维持在1 000 m Ah/g,表现出较佳的循环稳定性和较高的可逆比容量.研究表明,一维复合纳米纤维电化学性能的提升主要归因于硅碳复合结构中一维纳米纤维为硅提供了保护层,一方面有效抑制了硅的体积膨胀,另一方面提升了硅的电子导电性并有效缩短了离子迁移路径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号