首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Polycomb group (PcG) proteins are crucial chromatin regulators during development.H2AK119ub1(H2Aub) and H3K27me3 are catalyzed by Polycomb-repressive complex 1 ...  相似文献   

6.
7.
Purification of a pluripotent neural stem cell from the adult mouse brain   总被引:75,自引:0,他引:75  
Rietze RL  Valcanis H  Brooker GF  Thomas T  Voss AK  Bartlett PF 《Nature》2001,412(6848):736-739
The adult mammalian central nervous system (CNS) contains a population of neural stem cells (NSCs) with properties said to include the generation of non-neural progeny. However, the precise identity, location and potential of the NSC in situ remain unclear. We purified NSCs from the adult mouse brain by flow cytometry, and directly examined the cells' properties. Here we show that one type of NSC, which expresses the protein nestin but only low levels of PNA-binding and HSA proteins, is found in both ependymal and subventricular zones and accounts for about 63% of the total NSC activity. Furthermore, the selective depletion of the population of this stem cell in querkopf mutant mice (which are deficient in production of olfactory neurons) suggests that it acts as a major functional stem cell in vivo. Most freshly isolated NSCs, when co-cultured with a muscle cell line, rapidly differentiated in vitro into myocytes that contain myosin heavy chain (MyHC). This demonstrates that a predominant, functional type of stem cell exists in the periventricular region of the adult brain with the intrinsic ability to generate neural and non-neural cells.  相似文献   

8.
首先构建酿酒酵母BY4741组蛋白H3第14位赖氨酸突变菌株,该位点突变后则不能被乙酰化.然后通过Western blot检测突变菌株和未突变菌株(对照菌株)的H3K4三甲基化.结果表明,H3K14突变菌株中未检测到H3K4三甲基化,而作为对照的未突变菌株能够检验到H3K4三甲基化修饰.该结果显示酿酒酵母组蛋白H3K14乙酰化能够对H3K4三甲基化产生影响.  相似文献   

9.
为了探讨人胚神经干细胞体外培养条件下的生物学特性,为其应用于临床治疗奠定基础.取胎龄16周的人流产胚胎,胰酶消化结合机械法分离成单细胞悬液,以2×106个细胞/mL接种到含hEGF和h-bFGF的DMEM/F12、N2培养基进行体外培养;观察细胞生长情况,用10% FBS诱导神经干细胞球分化,免疫细胞化学鉴定. 结果显示从人胚大脑分离出的细胞经悬浮培养可以形成细胞球,表达Nestin蛋白.经诱导分化后具有表达神经元,神经胶质细胞的特异性抗原. 说明人胚神经干细胞在体外可以稳定生长,并能分化成为神经原及胶质细胞.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Active genes are tri-methylated at K4 of histone H3   总被引:92,自引:0,他引:92  
Lysine methylation of histones in vivo occurs in three states: mono-, di- and tri-methyl. Histone H3 has been found to be di-methylated at lysine 4 (K4) in active euchromatic regions but not in silent heterochromatic sites. Here we show that the Saccharomyces cerevisiae Set1 protein can catalyse di- and tri-methylation of K4 and stimulate the activity of many genes. Using antibodies that discriminate between the di- and tri-methylated state of K4 we show that di-methylation occurs at both inactive and active euchromatic genes, whereas tri-methylation is present exclusively at active genes. It is therefore the presence of a tri-methylated K4 that defines an active state of gene expression. These findings establish the concept of methyl status as a determinant for gene activity and thus extend considerably the complexity of histone modifications.  相似文献   

17.
Wurmser AE  Nakashima K  Summers RG  Toni N  D'Amour KA  Lie DC  Gage FH 《Nature》2004,430(6997):350-356
Somatic stem cells have been claimed to possess an unexpectedly broad differentiation potential (referred to here as plasticity) that could be induced by exposing stem cells to the extracellular developmental signals of other lineages in mixed-cell cultures. Recently, this and other experimental evidence supporting the existence of stem-cell plasticity have been refuted because stem cells have been shown to adopt the functional features of other lineages by means of cell-fusion-mediated acquisition of lineage-specific determinants (chromosomal DNA) rather than by signal-mediated differentiation. In this study we co-cultured mouse neural stem cells (NSCs), which are committed to become neurons and glial cells, with human endothelial cells, which form the lining of blood vessels. We show that in the presence of endothelial cells six per cent of the NSC population converted to cells that did not express neuronal or glial markers, but instead showed the stable expression of multiple endothelial markers and the capacity to form capillary networks. This was surprising because NSCs and endothelial cells are believed to develop from the ectoderm and mesoderm, respectively. Experiments in which endothelial cells were killed by fixation before co-culture with live NSCs (to prevent cell fusion) and karyotyping analyses, revealed that NSCs had differentiated into endothelial-like cells independently of cell fusion. We conclude that stem-cell plasticity is a true characteristic of NSCs and that the conversion of NSCs to unanticipated cell types can be accomplished without cell fusion.  相似文献   

18.
19.
Pax3 functions at a nodal point in melanocyte stem cell differentiation   总被引:2,自引:0,他引:2  
Lang D  Lu MM  Huang L  Engleka KA  Zhang M  Chu EY  Lipner S  Skoultchi A  Millar SE  Epstein JA 《Nature》2005,433(7028):884-887
  相似文献   

20.
Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号