共查询到15条相似文献,搜索用时 54 毫秒
1.
对于带未知噪声统计的多传感器系统,应用现代时间序列分析方法,基于滑动平均(MA)新息模型参数的两段递推最小二乘法在线辨识,可在线估计未知噪声方差,进而提出了一种加权观测融合自校正Kalman估值器,可统一处理自校正滤波、预报和平滑问题,并证明了它的收敛性,即若MA新息模型参数估计是一致的,则它与相应的最优加权观测融合Kalman估值器的误差收敛到零,因而具有渐近全局最优性。一个带3传感器跟踪系统的仿真例子说明了其有效性。 相似文献
2.
对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和求解相关函数矩阵方程组,可在线估计噪声统计,进而在按矩阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman预报器。证明了它的收敛性,即它具有渐近最优性,且自校正融合Kalman预报器比每个局部自校正Kalman预报器精度高。一个目标跟踪系统的仿真例子说明了其有效性。 相似文献
3.
隐式自校正加权观测融合Kalman滤波器 总被引:1,自引:1,他引:0
对于带未知噪声方差的线性离散定常随机系统,利用多个结构相同但精度不同的传感器进行观测,各观测结果之差可以产生多组新的白噪声序列,利用各组白噪声的相关函数阵解矩阵方程组,可解得各传感器观测噪声方差Ri.通过状态方程和观测方程以及观测噪声估值,可求得ΓQwΓT的估计,进而得到隐式自校正加权观测融合Kalman滤波器.一个目标跟踪系统的仿真例子说明了其有效性. 相似文献
4.
对含未知模型参数和未知噪声方差的多传感器自回归滑动平均(ARMA)信号,应用递推辅助变量(RIV)算法得到局部模型参数估值器,用相关方法得到局部噪声方差估值器,然后用取局部估值器的平均得到信息融合估值器。将这些融合估值器代入ARMA信号的全局最优分布式融合Kalman滤波器,提出了一种自校正分布式融合Kalman滤波器。用动态误差分析方法证明了它收敛于全局最优分布式Kalman滤波器,因而它具有渐近全局最优性。一个目标位置跟踪系统仿真例子说明了其有效性。 相似文献
5.
对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型的在线辨识和求解相关函数矩阵方程组,可在线估计噪声统计,进而在按标量加权线性最小方差最优信息融合准则下,提出了自校正标量加权信息融合Kalman滤波器。它具有渐近最优性,且比每个局部自校正Kalman滤波器精度高,算法简单,便于实时应用。一个目标跟踪系统的仿真例子说明了其有效性。 相似文献
6.
对于含有未知模型参数和噪声统计的多传感器信号反卷积系统,应用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型参数的在线辨识,可在线估计噪声方差,进而提出了自校正信息融合Wiener反卷积滤波器。证明了它的渐近最优性,即若ARMA新息模型参数估计是一致的,则它收敛于当噪声方差已知时的最优融合Wiener反卷积滤波器。同单传感器情形相比,它可提高滤波精度。一个带三传感器的反卷积系统的仿真例子说明了其有效性。 相似文献
7.
对于带有相关观测噪声、未知噪声统计、不同观测阵带有相同右因子的多传感器线性离散定常随机系统,利用相关方法,提出了噪声统计信息的在线辨识器.基于ARMA新息模型,提出了自校正加权观测融合Kalman滤波器,避免了求解Lyapunov和Riccati方程,减少了计算负担,适于实时应用.利用动态误差系统分析(DESA)方法,严格证明了提出的自校正融合滤波器以概率1或按实现收敛于相应的最优融合滤波器,即具有渐近全局最优性.一个3传感器跟踪系统的仿真例子说明其有效性. 相似文献
8.
对于带有相关噪声和未知噪声统计的多传感器线性离散定常随机系统,利用相关方法,提出了噪声统计信息的在线估计器.基于ARMA新息模型,提出了自校正加权观测融合Kalman滤波器,避免了求解Lyapunov和Riccati方程,减少了计算负担,适于实时应用.利用动态误差系统分析(DESA)方法,严格证明了提出的自校正融合滤波器以概率1或按实现收敛于相应的最优融合滤波器,即具有渐近全局最优性.一个3传感器系统的仿真例子说明其有效性. 相似文献
9.
10.
对于带未知噪声方差和带不同观测阵的多传感器系统,应用现代时间序列分析方法,基于子系统和加权观测融合系统的滑动平均(MA)新息模型的在线辨识,提出了一类自校正加权观测融合解耦Wiener状态预报器。用动态误差系统分析方法,证明了它按实现收敛于当噪声方差已知时的最优加权观测融合解耦Wiener状态预报器,因而它具有渐近全局最优性。一个目标跟踪系统的仿真例子说明了其有效性。 相似文献
11.
《阜阳师范学院学报(自然科学版)》2015,(3)
针对带相关噪声的多传感器广义系统,提出一种分布式分量标量加权融合稳态降阶Kalman滤波器。应用奇异值分解将原广义系统转化两个等价的降阶子系统,将广义系统状态估计问题转为正常系统的状态估计问题,并求得任两个传感器子系统之间的稳态降阶滤波误差互协方差阵。兼顾融合精度和计算负担,以线性最小方差为融合准则,得到按分量标量加权的稳态Kalman滤波器。该滤波器避免了时刻计算协方差阵和融合权重明显减小了在线计算负担,便于实时应用。Monte Carlo仿真验证方法的有效性。 相似文献
12.
两传感器自校正信息融合Kalman滤波器 总被引:7,自引:4,他引:7
用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型的在线辨识,对含有未知模型参数和噪声方差的两传感器线性离散随机系统,提出了自校正信息融合Kalman滤波器。它具有渐近最优性。一个仿真例子说明了其有效性。 相似文献
13.
对于具有相同观测方程,相关观测噪声的非系统,应用无迹卡尔曼滤波器(UKF),以及加权最小二乘(WLS)法,提出了加权观测融合UKF滤波算法.该算法具有全局最优性,且没有增加观测系统的维数,进而没有增加系统的计算负担.一个带有相关观测噪声的两传感器非线性系统的仿真例子说明了该融合算法的有效性及等价性. 相似文献
14.
自校正集中式融合信息滤波器 总被引:1,自引:0,他引:1
对于带未知噪声系统和不相关噪声的多传感器随机系统,将基于相关方法得到的噪声方差带入到集中式融合最有信息滤波器,提出自校正集中式融合信息滤波器。同基于Riccatia方程的集中式融合Kalman滤波器相比,它避免了计算高维矩阵的逆,从而减少了计算负担。应用动态误差分析方法,证明了自校正集中式融合信息滤波器以概率1收敛于最优集中式融合信息滤波器,因而具有全局渐进最优性。一个带3传感器跟踪系统的实例说明其有效性。 相似文献