共查询到19条相似文献,搜索用时 62 毫秒
1.
在中文命名实体识别任务中,字信息融合词汇信息能丰富文本特征,但一个字可能对应多个候选词汇,容易产生词汇冲突,融合无关词汇信息会影响模型的识别效果,对此提出了词典信息分层调整的中文命名实体识别方法。首先将所有潜在词语按照词语长度进行分层,通过高层词语反馈调整低层词语的权重来保留更有用的信息,以此缓解语义偏差问题和降低词汇冲突影响;然后将词汇信息拼接到字信息来增强文本特征表示。在Resume和Weibo数据集上的实验结果表明,本文方法与传统方法相比具有更优的效果。 相似文献
2.
针对目前中文命名时实体识别方法中存在的中文边界识别困难、模型梯度、文本特征不够充分等问题,提出了一种融合词性特征与双向时间卷积网络的中文命名时实体识别模型。该模型提出使用XLNet预训练语言模型生成对应的词嵌入表示,融合后使用双向时间卷积网络提取文本前向特征与后向特征。实验中对时间卷积网络的空洞因子、卷积层数和卷积核数进行参数实验并分析其影响原因,结果表明,该模型与其他模型相比,能够更准确且有效地提取文本中的实体。 相似文献
3.
电子医疗系统中的医疗健康数据为医学研究和医疗实践奠定了强大的数据基础,如何充分利用这些数据进行探索和分析,更好地支持临床决策和大众健康仍然面临着诸多挑战.因此,对中文医疗命名实体识别方法和研究现状进行归纳分析,对于医学研究具有一定的指导意义.本文阐述了医疗命名实体识别任务的定义,分析并提出了中文医疗命名实体识别的研究热... 相似文献
4.
多特征中文命名实体识别 总被引:1,自引:0,他引:1
命名实体识别任务是对文本中的实体进行定位,并将其分类至预定义的类别中.目前主流的中文命名实体识别的模型是基于字符的命名实体识别模型.该模型在使用句法特征之前,需先进行分词,不能很好的引入句子的句法信息.另外,基于字符的模型没有利用词典中的先验词典信息,以及中文偏旁部首蕴含的象形信息.针对上述问题,论文提出了融合句法和多粒度语义信息的多特征中文命名实体识别模型.实验证明论文模型相对目前主流模型有了较大的提高,同时论文还通过实验分析了各种特征对模型识别效果的影响. 相似文献
5.
鉴于现有中文实体链接基准语料库的缺乏, 在ACE2005中文语料库和中文维基百科的基础上, 通过自动构造和人工标注的方法, 构建一个中文实体链接语料库及其相关的中文知识库。与传统的英文实体链接语料库不同, 构造的中文实体链接语料库是基于实体而非单个实体指称(Mention)。中文实体链接语料库的构建, 将为中文实体链接研究提供一个可用的基准平台。 相似文献
6.
预训练语言模型能够表达句子丰富的句法和语法信息,并且能够对词的多义性建模,在自然语言处理中有着广泛的应用,BERT(bidirectional encoder representations from transformers)预训练语言模型是其中之一。在基于BERT微调的命名实体识别方法中,存在的问题是训练参数过多,训练时间过长。针对这个问题提出了基于BERT-IDCNN-CRF(BERT-iterated dilated convolutional neural network-conditional random field)的中文命名实体识别方法,该方法通过BERT预训练语言模型得到字的上下文表示,再将字向量序列输入IDCNN-CRF模型中进行训练,训练过程中保持BERT参数不变,只训练IDCNN-CRF部分,在保持多义性的同时减少了训练参数。实验表明,该模型在MSRA语料上F1值能够达到94.41%,在中文命名实体任务上优于目前最好的Lattice-LSTM模型,提高了1.23%;与基于BERT微调的方法相比,该方法的F1值略低但是训练时间大幅度缩短。将该模型应用于信息安全、电网电磁环境舆情等领域的敏感实体识别,速度更快,响应更及时。 相似文献
7.
《华东师范大学学报(自然科学版)》2021,(5)
命名实体识别(Named Entity Recognition, NER)作为自然语言处理的基本任务之一,一直以来都是国内外研究的热点.随着金融互联网的快速发展,迄今为止,金融领域中文NER不断进步,并得以应用到其他金融业务中.为了方便研究者了解金融领域中文NER方法的发展状况和未来发展趋势,进行了一项相关方法的研究和总结.首先,介绍了NER的相关概念和金融领域中文NER的特点;然后,按照金融领域中文NER的发展历程,将研究方法分为基于字典和规则的方法、基于统计机器学习的方法和基于深度学习的方法,并详细介绍了每类方法的特点和典型模型;接下来,简要概括了金融领域中文NER的公开数据集和工具、评估方法及其应用;最后,向读者阐述了目前面临的挑战和未来的发展趋势. 相似文献
8.
汉字是象形文字,其字形特征对于中文命名实体识别有着重要的作用。针对双向长短期记忆模型(bi-directional long short-term memory,BiLSTM)提取部首,命名实体识别准确率不高的问题,提出笔画组成编码器,用于获取汉字的字形特征,并将笔画字形特征向量和预训练的语言表征模型(bidirectional encoder representation from transformers,BERT)输出的字向量进行拼接,将拼接后的向量放入双向长短期记忆模型与条件随机场(conditional random field,CRF)相连的标注模型(BiLSTM-CRF)中进行命名实体识别。实验表明,所提的方法在Resume数据集上命名实体识别准确率有显著提升。相较于用卷积神经网络做编码器提取汉字字形特征,准确率高出0.4%。相较于使用BiLSTM提取的部首特征模型和加入词典的长短期记忆模型(Lattice LSTM)模型其准确率分别提升了4.2%、0.8%。 相似文献
9.
中文命名实体识别方法中采用较多的是神经网络模型,但该模型在训练过程中存在字向量表征过于单一的问题,无法很好地处理字的多义性特征.因此,提出一种基于Bert-BLSTM-CRF模型的中文命名实体识别研究方法,使用Bert预训练语言模型,根据字的上下文信息来丰富字的语义向量,将输出的字向量序列作为输入送入BLSTM-CRF模型进行训练.实验结果表明,此方法在中文命名实体识别任务上其准确率、召回率和F1值分别取得了94.80%、95.44%和95.12%的成绩,相较于其他传统方法,效果显著. 相似文献
10.
蔡庆 《东南大学学报(自然科学版)》2020,(5):929-934
为提高中文命名实体识别任务的识别率,提出了一种多准则融合模型.采用基于字的BERT语言模型作为语言信息特征提取层,将其接入多准则共享连接层和条件随机场(CRF)层,得到融合模型.建立大规模中文混合语料库,优化模型参数,使用单GPU设备完成BERT语言模型的预训练.将融合模型在MSRA-NER和RMRB-98-1实体标注集上进行独立训练和混合训练,得到各语料库独立的单准则中文命名实体识别模型和多准则融合中文命名实体识别模型.结果表明,多准则融合中文命名实体识别模型能够挖掘语料库间的共有信息,提高中文命名实体的识别率,MSRA-NER和RMRB-98-1实体标注集上的F1值分别为94.46%和94.32%,优于其他现有模型. 相似文献
11.
分析电子数码领域的产品命名实体识别的难点和特点,提出了一种基于知识库的最大熵模型的产品命名实体识别方法,实现了从中文网络文本中抽取产品命名实体.实验表明,该系统在电子数码领域中能较好地识别出产品命名实体,对产品命名实体的F1值识别性能达到86.91%. 相似文献
12.
为了快速处理航天情报,基于数据驱动的深度学习技术,提出融合多源异构知识标注中文航天情报数据集的方法流程,以及基于预训练(pre-training)模型的航天情报实体识别(AIER)方法;通过对航天情报进行命名实体识别,达到对航天情报进行信息抽取的目的.通过融合BERT(bidirectional encoder representation from transformers)预训练模型和条件随机场(CRF)模型构建AIER模型(BERT-CRF模型),将其与隐马尔可夫模型(HMM)、条件随机场(CRF)模型、双向长短期记忆网络加条件随机场(BiLSTM-CRF)模型进行实体识别对比实验.结果表明:基于预训练模型的AIER模型能够取得93.68%的准确率、97.56%的召回率和95.58%的F1值;相比于其他方法,基于预训练模型方法的性能得到提高. 相似文献
13.
针对中文产品命名实体,提出了一种基于多种特征融合的识别方法。该方法以词为标注粒度,将多种特征融合到条件随机场模型中,采用递增式学习策略选取最优的特征模板,实现了从中文自由文本中识别产品命名实体。实验表明,该方法获得了令人满意的实验效果,准确率、召回率和F值分别达到94.87%、92.50%和93.67%。 相似文献
14.
由于中文语境的复杂性,存在语言边界不清晰、语境依赖、大量的近义词和一词多义等实体嵌套现象,直接套用英文语境中的先进模型效果不理想.针对中文医药词汇和语境的特点,在双向编码器表示预训练语言模型基础上引入自注意机制,结合BiLSTM+CRF模型进行中文命名实体识别,以增强词向量之间以及词向量内的字间关系.试验结果表明,本文模型在嵌套实体数据集上和非嵌套实体数据集上的F1值都较高,对中文医药语境具有较好的适应性. 相似文献
15.
采用手工分析案件卷宗,容易产生案件实体遗漏现象及提取特征效率低下问题.为此,使用基于双向训练Transformer的编码器表征预训练模型.在手工标注的语料库中微调模型参数,再由长短时记忆网络与条件随机场对前一层输出的语义编码进行解码,完成实体抽取.该预训练模型具有巨大的参数量、强大的特征提取能力和实体的多维语义表征等优势,可有效提升实体抽取效果.实验结果表明,本文提出的模型能实现89%以上的实体提取准确度,显著优于传统的循环神经网络和卷积神经网络模型. 相似文献
16.
基于条件随机场的中医命名实体识别 总被引:1,自引:0,他引:1
中医医案蕴藏着丰富的知识,如何完成对海量医案的自动标注以便对其进行知识挖掘显得尤为重要.针对明清古医案中症状、病机的自动识别标注问题,采用了基于条件随机场(CRF)的方法,提出数据清洗以及缩减合并词性以减少特征空间规模.最后,通过仿真实验将该方法与最大熵、支持向量机这两种统计方法进行对比.结果表明:该方法在针对明清古医案中症状、病机这类中医命名实体识别具有明显的优势. 相似文献
17.
为在不依赖特征工程的情况下提高中文领域命名实体识别性能,构建了BLSTM-CRF神经网络模型。首先利用CBOW模型对1998年1月至6月人民日报语料进行负采样递归训练,生成低维度稠密字向量表,以供查询需要;然后基于Boson命名实体语料,查询字向量表形成字向量,并利用Jieba分词获取语料中字的信息特征向量;最后组合字向量和字信息特征向量,输入到BLSTM-CRF深层神经网络中。实验结果证明,该模型面向中文领域命名实体能够较好的进行识别,F1值达到91.86%。 相似文献
18.
针对现有多模态命名实体识别(Multimodal Named Entity Recognition, MNER)研究中存在的噪声影响和图文语义融合不足问题,本文提出一个多模态语义协同交互的图文联合命名实体识别(Image-Text Joint Named Entity Recognition, ITJNER)模型。ITJNER模型加入图像描述作为额外特征丰富了多模态特征表示,图像描述可以帮助过滤掉从图像特征中引入的噪声并以文本形式总结图像语义信息;还构建了多模态协同交互的多模态语义融合模型,可以加强多模态信息融合,并减少图像信息的语义偏差。在Twitter-2015和Twitter-2017数据集上进行方法实验,分析实验结果并与AdaCAN、UMT、UMGF、Object-AGBAN等方法进行对比。相较于对比方法中的最优方法UMGF,本方法在Twitter-2017数据集上的准确率、召回率、F1值分别提高了0.67%、2.26%、0.93%;在Twitter-2015数据集上,召回率提高了0.19%。实验结果验证了本方法的有效性。 相似文献
19.
刘杰 《太原师范学院学报(自然科学版)》2009,8(1)
文章主要讨论了自然语言处理中的关键技术中文命名实体识别.在总结中文命名实体识别的特点和难点的基础上提出了三种常用的识别方法.重点研究了基于统计方法的隐马尔科夫模型在命名实体识别中的应用,同时指出传统的隐马尔科夫模型在实体识别中存在的局限性,对其进行分析并作出进一步改进. 相似文献