共查询到18条相似文献,搜索用时 62 毫秒
1.
为提高雷达信号的识别率,提出一种改进的果蝇优化算法(improved fruit fly optimization algorithm, IFOA)和模拟退火(simulated annealing, SA)算法相融合并用于优化反向传播(back propagation, BP)神经网络的雷达信号识别算法。首先,该算法提取雷达信号的调和平均盒维数、信息维数和差分近似熵特征作为信号识别的三维特征。然后,改进果蝇优化算法的寻优步长并添加逃脱系数以修改适应度函数,同时引入三维空间的搜索概念扩大果蝇的搜索范围,再对果蝇算法所求解的接受机制通过SA算法进行修正。最后,将融合后的算法IFOA-SA用于优化BP神经网络得到网络最优的初始权值和阈值,并用此网络进行雷达信号的分类识别。通过与BP和FOA-BP进行对比,结果表明IFOA-SA-BP能够提高雷达信号的识别率,证实了该算法的有效性。 相似文献
2.
针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特征,实现对不同调制样式雷达信号的识别,最后对不同结构网络模型的识别结果进行对比。仿真实验结果表明,相比传统雷达信号识别方法,该方法对于不同调制类型信号的识别效果优异,并且在识别率、抗噪性上都有所提升。 相似文献
3.
针对低信噪比(signal to noise ratio,SNR)下雷达信号脉内调制类型识别率较低的问题,提出了基于时频特征提取和残差神经网络的雷达信号识别算法.时频特征提取首先通过分数阶傅里叶变换对信号进行Chirp基分解,按照Chirp基载频与调频率的不同组合对信号划分类别,并设置对应的分类特征参数.然后,计算信号... 相似文献
4.
低截获概率(low probability of intercept, LPI)雷达作为一种具有强抗干扰能力及低截获特性的新型雷达, 对其精准高效识别已成为雷达对抗一方波形识别的难点。针对该方向主流分类器卷积神经网络(convolution neural network, CNN)的结构智能寻优问题, 提出一种基于粒子群优化(particle swarm optimization, PSO)算法-CNN的波形识别算法。该算法利用PSO的寻优特性, 可实现较大范围内自动搭建不定层数、不定层类别及层内参数的CNN结构并进行迭代寻优; 采用识别精度及网络复杂度相结合的衡量指标, 可根据需求调整两者比重以实现对精度与轻量性的选择。该算法获取的CNN结构实现了比9种经典CNN结构更好的LPI雷达波形识别效果, 同时避免了波形识别时人工选定CNN超参数缺乏智能性、客观性的问题, 提高了选用CNN结构的适配性及高效性。 相似文献
5.
提出了一种雷达型号的融合识别模型。将人工神经网络、模糊匹配和可能性理论有效地结合起来,用人工神经网络进行粗分类,识别出雷达体制,用模糊匹配识别出该体制下的雷达型号,再用可能性理论对不同空域和时域的数据进行融合。实验结果表明,该模型可以提高雷达型号的识别率、可靠性和强噪声环境下的误差容错能力。 相似文献
6.
在线密度法在原油含水率测量中有很强的实用价值, 但存在着受现场不确定因素影响测量误差波动较大的缺点. 为了提高含水率的测量精度和稳定性,将误差反向传播神经网络用于密度法计算含水率数学模型中, 针对该算法收敛速度缓慢和易陷入局部极小点的缺点, 提出了将模拟退火算法用于该模型的全局寻优, 改进后的误差反向传播神经网络的误差预报值对密度法模型计算值进行修正. 通过对离线实验数据的训练, 该方法能够有效地提高在线快速含水率测定结果的准确性. 相似文献
7.
雷达目标识别中的BP神经网络算法改进及应用 总被引:4,自引:0,他引:4
针对雷达目标信号的复杂性和实用雷达目标识别系统所应具备的稳健性、扩展性及通用性等要求,提出多种简单有效的BP神经网络算法改进。通过平衡训练样本数量、动态重置初始权值、评定网络规模等措施,解决了BP算法收敛速度慢、受初始样本分布影响大等缺陷,提高了识别算法的稳健性和泛化能力。结果已成功应用到不同型号雷达上的多套目标识别系统中。大量试验和长期使用证明了该方法的有效性和实用性 相似文献
8.
9.
基于子波变换和神经网络的舰船目标识别 总被引:2,自引:0,他引:2
特征提取方法和分类器的选择是舰船目标识别的关键。介绍了一种目标分类和识别的方法。首先利用子波变换和多分辨分解算法对实际采集到的各类舰船目标辐射噪声进行特征提取 ,获得目标的线谱和调制谱特征 ,然后利用模糊自组织聚类网络 (FKCN)分类器对各类目标进行分类识别。最后利用实测数据进行仿真分析 ,并与其它特征提取和分类识别方法比较 ,验证了所用方法的可行性 ,且获得了较好的效果。 相似文献
10.
针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise, DBSCAN)算法对侦获信号的脉冲描述字进行分选;而后,利用分选所得脉冲的时序特征与重点目标信号脉冲重复间隔(pulse repetition interval, PRI)生成仿真信号;最后,计算仿真信号的互相关函数,基于相关度判断PRI参数是否匹配。仿真实验表明:所提方法明显提升了对重点目标信号的识别时效,能够应对存在噪声干扰和信号交叠的复杂信号环境,对局部脉冲参数丢失不敏感。 相似文献
11.
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition. 相似文献
12.
基于小波神经网络的胎号识别算法研究 总被引:1,自引:0,他引:1
针对人工神经网络的特点,对传统BP算法进行了改进。采用小波神经网络方法,有效克服了传统BP算法在实际应用中学习收敛速度慢和容易出现局部极小点的缺点。以轮胎胎号字符识别为例,分别用投影法和Hu不变距方法进行特征提取,并将所提取的特征用作神经网络输入层的神经元。将所设计的小波神经网络经训练后用于胎号的识别。仿真结果表明,小波神经网络在字符识别方面是一个十分有效的方法。 相似文献
13.
针对合成孔径雷达(synthetic aperture radar, SAR)图像目标识别问题, 提出了基于改进的卷积神经网络和数据增强的SAR目标识别方法。首先在训练阶段引入Dropout, 随机删除部分神经元, 增强网络的泛化能力。其次, 在网络中引入L2正则化, 简化模型的同时降低结构风险, 并且能有效地抑制过拟合。然后, 采用Adam优化网络, 提高模型的收敛效率。最后, 采用优选的数据增强方法, 扩充SAR目标数据集, 为网络训练提供更为充足的样本, 进一步提高识别的准确率和模型的泛化性。在运动和静止目标获取与识别(moving and stationary target acquisition and recognition, MSTAR)数据集上进行了实验, 结果表明设计的卷积神经网络识别准确率高, 且具有更好的泛化性。 相似文献
14.
针对分类网络难以有效扩展分类数量的问题,提出了一种基于深层残差网络和三元组损失的雷达信号识别方法。该方法首先将雷达信号作为深层残差网络的输入,通过一维卷积将雷达信号映射到128维欧几里得空间,得到信号的特征向量;然后利用三元组损失函数调整网络参数,使得同类信号之间特征向量的欧式距离减小而不同类别信号之间的距离增大;最后通过基于样本库的识别算法实现对信号的分类识别。实验结果表明,相较于传统的分类网络,该方法在保证识别准确率的同时使得模型能够对分类数量进行有效扩展。 相似文献
15.
飞行动作识别是飞行训练评估和空战智能决策等多项关键技术的基础, 实现飞行动作的快速高效识别具有重大意义。对此, 提出一种基于神经网络符号化模型的方法, 实现对基本飞行动作和复杂飞行动作高效识别。首先, 利用微分分割的思想对飞行参数进行切片处理, 然后通过卷积神经网络(convolutional neural networks, CNN)和长短期记忆(long-short term memory, LSTM)神经网络实现飞行动作的模块化处理, 有效代替了传统方法中对原始数据的逻辑推理。并且该方法可以利用基本飞行动作对飞行过程实现飞行数据分割, 具有良好的扩展性, 能够快速处理批量飞参数据。最后对13种基本飞行动作、两种复杂飞行动作和整段飞行数据进行仿真实验。仿真结果表明, 该方法具有良好的识别性能。 相似文献
16.
讨论目标回波的分形特征和基于分形的识别方法,并用实际潜艇的回波数据进行了分形特征识别研究。在分析回波信号时间域波形的基础上,应用随机分形理论,给出基于分形布朗运动的回波信号分维特征矢量提取的理论和方法;提取了回波信号的分形维特征矢量。进而给出了基于BP网络的分类计算方法,计算结果表明,所提的提取水声回波信号目标特征矢量的方法与分类方法切实可行。 相似文献
17.
基于独立分量分析的雷达目标识别方法 总被引:1,自引:2,他引:1
通过分析雷达距离像的数学模型,利用独立分量分析(independent component analysis,ICA)技术提取雷达距离像信号中的独立分量,并定义为独立基波形。将观测信号投影到几个峰度大的独立基波形上,得到的各个投影分量作为待识别的信号特征。由于独立基波形实际上对应了目标回波中的散射中心响应,使得通过该方法提取的特征不仅保持了独立性,而且还具有实际的物理意义。在此基础上,使用支持矢量机(support vectormachine,SVM)作为分类器,进行了仿真实验和对比实验,实验结果表明该方法是有效和可行的。 相似文献
18.
基于神经网络的模糊综合评价方法 总被引:10,自引:0,他引:10
运用神经网络确定模糊综合评价中的权重值,使权重值更符合实际情况。采用改进的反向传播算法训练网络,逐步修正网络的连接权值,使模糊综合评价指标的权重值逐渐接近实际情况,得到较好的训练效率和效果。最后利用该方法对液压凿岩机进行性能评价,验证了该方法的正确性。 相似文献