共查询到18条相似文献,搜索用时 78 毫秒
1.
使用违法鸣笛辅助执法设备监测城市交通中汽车鸣喇叭事件的发生,可以有效地治理扰民的喇叭噪声,汽车鸣喇叭声的识别方法是其关键.为了准确高效地在交通噪声里识别出汽车鸣喇叭声,采用支持向量机(support vector machine,SVM)作为喇叭声和交通噪声的二分类器,针对汽车喇叭声的谐波特征分布特点,提取其梅尔频率倒... 相似文献
2.
低信噪比环境下语音信号的端点检测在语音识别与通信等领域具有重要意义,目前低信噪比环境下的端点检测还存在效率低、识别率不高等问题.本文在分析梅尔频率倒谱系数(MFCC)和短时能量在端点检测中应用的基础上,提出将MFCC前三维度分量相加(MFCCa),再与短时能量相除(梅尔能量比)作为语音特征参数的语音端点检测测度,最后利... 相似文献
3.
目的研究语音特征梅尔频率倒谱系数(MFCC)的选取对说话人识别系统性能的影响。方法采用基于平均影响值(MIV)的支持向量机(SVM)方法研究了说话人识别中的梅尔频率倒谱系数各维倒谱分量对于识别分类的贡献度。结果选择具有代表性的特征向量进行说话人分类识别,能得到维数更低、识别率更高的特征参数。结论通过MIV值可判断各维特征参数分量的重要性,选取权重值高的MFCC特征参数来提高系统识别率和缩短系统运行时间。 相似文献
4.
随着人工智能和大数据的发展,各种场景中对异常声音识别的需求日益增长,基于人工智能的声音识别技术正在兴起并被高度重视。现行主流的异常声音识别算法多为浅层机器学习模型结构,对异常声音的识别率较低,且识别的声音类型单一。为了有效识别异常声音,提出一种基于梅尔频率倒谱系数(Mel-frequency cepstral coefficient, MFCC)和卷积神经网络(convolution neural network, CNN)的环境声音识别算法,对各类异常声音进行采集和有效识别,并及时反馈声音状态,为各类声识别应用场景提供精细化管理技术手段。结果表明:提出的算法对5类场景下环境异常声音的识别率得到极大提高,适用于更广泛的声学场景,具有明显的优势。 相似文献
5.
为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient, MFCC);为更加全面表征转辙机声信号的特点,对MFCC进行改进得到多尺度MFCC特征;引入卷积神经网络(convolutional neural network, CNN)构建转辙机声信号识别模型,并采用五折交叉验证法获得两种特征的识别准确率。将S700K型转辙机在4种状态下运行时采集的真实声音信号进行训练和测试。结果表明:多尺度MFCC特征可使转辙机声音状态识别准确率至少提高7.5%。并且在低信噪比(signal-to-noise ratio, SNR)下,多尺度MFCC特征也有更好的表现,其准确率相较传统MFCC可提升35%。 相似文献
6.
用传统的梅尔倒谱系数作为特征进行车辆识别时,识别效果易受噪声干扰.为增强特征鲁棒性,提出一种加权的基频自适应梅尔倒谱系数特征提取算法.首先用能熵比法对车辆声音信号进行端点检测;然后提取车辆信号的基频,自适应构建三角滤波器组,提高滤波器对基频的感知敏感度;最后对基频自适应梅尔倒谱系数进行F比加权.实验结果表明,与传统梅尔倒谱系数相比,在识别车辆时,加权的基频自适应梅尔倒谱系数识别准确率提高7.10%,虚警率降低3.93%,漏警率降低7.10%. 相似文献
7.
用于音乐和语音的识别方法不适用于非结构化环境声音事件的识别。提出一种基于隐马尔可夫模型(HMM)和支持向量机(SVM)的二层分类策略,对家庭保健监测系统中的语音、警报声、电话铃声、笑声、尖叫声和咳嗽声等6种声音事件进行识别。首先,提取Mel频率倒谱系数(MFCCs)来分析环境声音信号。其次,以提取的MFCC特征为输入,依次采用HMM和SVM构造二级分类模型,通过识别和确认两个过程来对家庭保健监测系统中的环境声音事件进行识别。实验证明,该技术能提高家庭保健监测系统中易混淆环境声音的识别率。
相似文献
相似文献
8.
基于MFCCG-PCA的语音情感识别 总被引:1,自引:0,他引:1
针对语音情感值维度大、难处理的问题, 结合MFCC改进算法和PCA模型, 进行二次优化, 提出一种新的语音情感值提取模型MFCCG-PCA。多组实验表明, 相比一般的MFCC模型, MFCCG-PCA模型在语音情感识别方面的性能有较大提高。 相似文献
9.
为了拓展地面识别方式及提升识别率,提出利用履带机器人行驶噪声进行地面类型识别.使用声压传感器采集履带机器人在行驶过程中与地面相互作用辐射的声音信号,对声音信号提取修正的梅尔频率倒谱系数(MFCC)及其一阶差分(△MFCC)使用优化后的支持向量机(SVM)进行分类,并测试了该方法在多种背景噪声环境下的效果.结果表明,行驶噪声包含能够表征地面特点的信息.相比于幅域、频域和时频域特征,修正的MFCC+△MFCC特征具有明显优势.在校园环境中分类准确率达到了89.5%,当信噪比高于20 dB时,在多种背景噪声环境中分类准确率均达到80%左右. 相似文献
10.
基于小波EMD的柴油机油耗量测量信号去噪处理 总被引:1,自引:0,他引:1
提出基于小波经验模态分解的柴油机油耗量信号去噪处理算法.将柴油机油耗量测量信号进行经验模态分解(EMD)后,经阈值处理和尺度滤波,去掉主要干扰因素所对应的本征模函数(IMF)分量,然后对剩余IMF分量进行重构,得到去噪后柴油机油耗量测量信号的时间序列.测试结果表明:重构后的信号能反映柴油机油耗量信号的真实趋势,其相对误差约为0.72%. 相似文献
11.
基于小波包分解的纹理图像去噪 总被引:1,自引:0,他引:1
噪声对图像的后续处理影响较大,常用的去噪方法虽然可以去除变化平缓的图像中的噪声,但对细节较多的纹理图像的去噪效果却不太理想.文中基于信号和噪声在小波分解中呈现出来的不同特性,提出了一种新颖的小波包去噪算法.采用该算法对纹理图像进行最优小波包分解,并计算每个子频带的两个范数,然后根据范数值区分信号和噪声,从而达到去除噪声的目的.实验结果表明,该算法对皮革图像具有较好的去噪效果.不仅可以去除纹理图像中的大部分噪声,而且可以较好地保留图像纹理信息. 相似文献
12.
在研究可再生希尔伯特空间框架的基础之上,构建出一个新的序列核来对语音序列间的相似性进行度量.特征提取部分针对传统语音短时分析技术容易出现丢失信息的现状,提出了一种基于临界带宽的小波包变换算法.用美国国家标准与技术研究所(NIST)2004年评测数据集进行实验,结果表明该方法可以大幅度提高识别率. 相似文献
13.
基于小波包分析与支持向量机的电力电子整流装置故障诊断 总被引:1,自引:0,他引:1
李俊涛 《北华大学学报(自然科学版)》2014,(4):548-551
针对当前电力电子整流装置使用的故障诊断方法在应用过程中表现出的缺陷,提出了一种基于小波包分析与支持向量机的电力电子整流装置故障诊断方法:首先使用小波包分析方法对故障信号波形进行分解,提取故障特征向量,然后使用支持向量机理论构造多分类故障分类器对提取的故障特征向量进行分类.仿真实验结果表明,该方法能够有效地完成对电力电子整流装置的故障诊断,具有很好的工程应用价值. 相似文献
14.
基于小波包和支持向量机的传感器故障诊断方法 总被引:2,自引:0,他引:2
针对自确认压力传感器的故障诊断问题,提出了一种基于小波包变换和支持向量机的传感器故障诊断方法。该方法对传感器输出信号进行三层小波包分解,提取各个节点的小波包系数,对每个节点的小波包系数通过一定的削减算法增强故障特征,然后利用重构的时域信号计算各个节点的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。对自确认压力传感器、温度和流量传感器的故障诊断结果表明,该方法能有效地应用于传感器的故障诊断中。 相似文献
15.
齐英 《湖南文理学院学报(自然科学版)》2007,19(4)
提出了一种结合gabor滤波和模糊支持向量机进行嘴巴状态检测的方案.首先用gabor小波对人脸图像进行特征提取,从而得到嘴巴特征图像,然后在特征空间中,用FSVM设计嘴巴状态分类器.实验结果表明,该算法能够取得较好的分类效果. 相似文献
16.
针对模拟电路故障变化的复杂性,提出一种小波包分析和相关向量机的电路故障诊断模型,首先采集模拟电路不同故障状态下的输出信号,将输出信号进行小波包分解,提取分解信号的归一化能量特征,然后将特征向量输入相关向量机中进行训练,建立模拟电路故障诊断模型,实现不同的故障状态分类识别;最后通过仿真实例对模型性能进行测试.测试结果表明,相对于其他模拟电路故障诊断模型,该模型不但提高了模拟电路故障诊断的正确率,而且减少了故障诊断时间. 相似文献
17.
针对天体光谱,通过小波包分解对光谱特征进行提取,并将该特征与支撑矢量机相结合,从而得到一种对活动天体与非活动天体实现自动分类的新方法.该方法未用到谱线信息,避免了谱线提取的复杂过程,使得在低信噪比,红移未知的情况下,依然能够对活动天体与非活动天体进行有效的分类识别.通过实验表明,该方法比其他现有方法有更高的识别率,可达到96.64%,并具有相当好的鲁棒性. 相似文献
18.
针对电力系统输配电线路发生单相接地故障时,电气设备间的电磁环境复杂,现场环境干扰严重导致故障录波装置采集到的故障零序电流信号含有大量噪声,影响后续选线准确率的问题,提出了一种改进VMD和小波阈值法联合的单相接地故障的零序电流降噪方法,通过北方苍鹰优化算法优化改进变分模态分解(VMD)对零序电流信号分解,引入自适应相关阈值对分解后的分量进行筛选,对噪声分量进行小波阈值法降噪,最后将信号进行重构。通过搭建模型进行仿真实验,所提算法比传统VMD降噪算法信噪比提高了5.52%~35.99%,均方根误差降低了12.78%~30.88%,与小波阈值降噪方法、EEMD-小波阈值降噪方法、CEEMDAN-小波阈值降噪方法相比,也都有明显的优势,并且在标准测试信号Heavy Sine信号和Bumps信号中进行实验验证了算法的适用性。 相似文献