共查询到18条相似文献,搜索用时 78 毫秒
1.
考虑静态安全约束的暂态稳定极限计算 总被引:1,自引:0,他引:1
将求解暂态稳定极限问题描述为一个以输电线路或输电断面输送功率最大为目标,以静态安全及暂态稳定为约束条件的最优参数选取问题.并将一种新的进化算法——粒子群游(PSO),应用于暂态稳定极限计算.算例表明,此种计算方法克服了静态安全约束等因素对稳定极限的影响,因而减小了计算误差,提高了计算结果的精确性。 相似文献
2.
针对传统基于机器学习的电力系统暂态稳定评估方法存在准确率偏低和泛化能力不足的问题,提出了一种基于特征选择和改进随机森林的在线暂态稳定评估方法。首先,通过最大化联合互信息挖掘电网运行数据之间的相关性,筛选出具有代表性的关键特征子集;然后,考虑到电力系统数据库中稳定样本与失稳样本之间的类别不平衡问题,通过改进bootstrap抽样和对决策树进行加权处理,增强随机森林对失稳样本的识别能力;最后,基于改进的随机森林算法,建立关键特征数据与暂态稳定标签之间的映射关系。实验结果表明,所提方法具有较高的准确性和较强的鲁棒性,能够满足在线应用的需求。 相似文献
3.
随着大规模新能源并网以及新装置的不断应用,电力系统暂态稳定问题日益复杂,为进一步提升暂态稳定评估(transient stability assessment, TSA)的精确性和可靠性,提出一种基于多层CatBoost的TSA方法。首先,以电力系统故障前的稳态运行变量作为输入特征,采用一种最大相关最小冗余(maximal relevance minial redundancy, mRMR)集成方案,从输入特征中筛选出多组不同的关键特征集。然后,利用这些关键特征分别单独训练多个CatBoost模型,建立多个CatBoost驱动的TSA模型,并结合多个训练好的CatBoost模型构建TSA综合模型。在暂态稳定分析时,综合多个CatBoost模型的分析,通过多数投票表决方式判定最终评估结果。最后,在IEEE 39节点系统和某省级电力系统上进行性能测试实验。测试结果表明:所提出的TSA综合模型不仅具有极高的预测精度,而且拥有良好的泛化能力和鲁棒性。 相似文献
4.
随着清洁能源替代和电力系统电力电子化的趋势增强,传统的基于理论模型的电力系统数值仿真方法将面临新的挑战,不依赖于元件模型的数据驱动型电网稳定评估方法逐渐受到重视.基于极限学习机(ELM)理论,提出适于在线应用的电力系统暂态稳定评估方法.首先,通过调节稳定和失稳仿真样本的比例进行样本筛选,减轻样本集中失稳样本较少而引起的样本不均衡现象,并引入递归特征消除法进一步处理样本集;然后利用交叉验证法优化ELM的网络结构,并用处理后的样本集进行ELM的训练;最后,根据神经网络的输出结果预测系统的稳定性,并改进泛化能力评价标准对结果的可靠性进行评估.算例分析表明,递归特征消除法可明显降低特征冗余度,改善模型性能,所提出算法的训练时间短且具有较高的预测准确度. 相似文献
5.
如何有效地均衡可行区域与不可行区域的搜索是约束优化中的关键问题。为使进化算法获得可行的全局最优解,分析了在进化过程中如何对待好的不可行解的问题,通过分析随机排序中比较概率对可行解最终位置的影响,提出一种动态随机选择策略,并以多个体差分进化为框架实现了相应算法。实验对比分析结果说明了这一策略的有效性。 相似文献
6.
介绍了置信规则库转换(BRB-transformation,BRB-T)模型以及运用置信规则库(belief rule base,BRB)推理进行寿命评估的过程.针对当前的置信规则库学习方法还存在依赖初始解、规则条数偏多、系统结构复杂的问题,结合装备贮存寿命评估的BRB-T模型,提出了基于差分进化算法(DE)对该模型的BRB参数进行学习的优化方法.最后,通过某航天设备的失效数据进行了验证.结果表明,该优化方法能够有效地对模型的BRB参数进行优化;并且优化后的模型可以准确地对产品的寿命进行评估. 相似文献
7.
一般的神经网络的结构是固定的,在实际应用中容易造成冗余连接和高计算成本。该文采用了协同量子差分进化算法(cooperative quantum differential evolution algo-rithm,CQGADE)以同时优化神经网络的结构和参数,即采用量子遗传算法(quantum genetic algorithm,QGA)来优化神经网络的结构和隐层节点数,采用差分算法来优化神经网络的权值。训练后的神经网络的连接开关能有效删除冗余连接,算法的量子概率幅编码和协同机制可以提高神经网络的学习效率、逼近精度和泛化能力。仿真实验结果表明:用训练后的神经网络预测太阳黑子和蒸汽透平流量具有更好的预测精度和鲁棒性。 相似文献
8.
《广西大学学报(自然科学版)》2021,46(4)
为了有效辨识电力系统暂态失稳后发电机的动态行为,以失稳后的功角数据为输入特征信息,提出一种基于知识发现和分层极限学习机(ELM)的失稳模式辨识方法。首先利用ELM快速辨识系统暂态不稳定的功角样本。为了充分利用不稳定样本自身结构来挖掘关键信息,引入知识发现算法KODAMA以获取发电机的不稳定动态行为模式,构建失稳功角模态集。然后,根据所得模态数据集,为提高不稳定模式辨识的准确性,设计了分层ELM的辨识策略以辨识发电机的失稳模式。最后,在Nordic系统中验证所提方法的有效性,测试结果表明提出的辨识方法能够准确地辨识失稳模式,且在保证尽可能高精度的前提下,具有相对快速的评估速度。 相似文献
9.
图像增强是图像处理中重要的步骤之一,基于非完全Beta函数变换的图像增强办法能够获得较为理想的增强效果.然而合理的Beta函数参数选取一直没有得到很好的解决,常需要人工干预或者计算非常耗时.差分进化算法是一种新型的进化计算方法,具有自适应、自组织等智能特性和强大的寻找优化解的能力.这里将差分进化算法用于Beta函数参数的自适应选取,实现了基于差分进化算法的非完全Beta函数图像增强方法,实际图像增强实验结果表明了该方法的有效性和可行性. 相似文献
10.
山区环境中泥石流的孕育受多种因素的影响,为提高泥石流危险性的预测精度,提出一种萤火虫算法(firefly algorithm, FA)优化核极限学习机(kernel based extreme learning machine, KELM)的预测模型。首先,针对数据维度爆炸的问题,通过主成分分析(principal component analysis, PCA)数据降维,使得留有大部分致灾特征信息的因子输入训练模型;然后,使用萤火虫优化算法更新核极限学习机的参数,将四川省北川县监测数据输入优化后的预测模型,并与其他传统机器学习算法进行对比分析,验证该算法的优越性;最后,使用多种指标综合评估模型的预测效果。结果表明,FA-KELM模型能够有效地简化数据结构,提高泥石流危险性预测的准确性,为泥石流灾害预测方面的研究提供参考和借鉴。 相似文献
11.
极限学习机是一种新型的单隐层前馈神经网络,在训练网络的过程中随机给定输入层权值和隐藏层偏差,所以训练速度非常快,但却导致了输出不稳定.提出了一种基于AdaBoost的极限学习机,把极限学习机作为AdaBoost的基本分类器,通过改变输入数据的权重,使得极限学习机的分类性能得到提升.实验结果表明了该方法与极限学习机和传统的神经网络相比,能够提高极限学习机的学习性能,并且使极限学习机输出更加稳定. 相似文献
12.
针对极限学习机在高维度、含噪声数据集中需要大量隐含层节点来保证分类性能的问题,设计了镜像极限学习机.该算法使用伪逆法确定输入权值,随机生成输出权值和偏置,在对数据进行分类时,它仅需极少的隐含层节点.为了提升镜像极限学习机的分类性能和抗噪性,将它与去噪自编码器相结合.利用去噪自编码器对输入数据进行特征提取,并将提取到的特征作为镜像极限学习机的输入数据,再进行网络训练.在无噪和含噪声的MNIST,Fashion MNIST,Rectangles和Convex数据集中,将基于去噪自编码器的镜像极限学习机与ELM,PCA-ELM,SAA-2和DAE-ELM作对比实验,结果表明,基于去噪自编码器的镜像极限学习机的综合性能最优,用于分类的网络隐含层节点数最少. 相似文献
13.
基于ELM特征映射的kNN算法 总被引:1,自引:0,他引:1
研究了基于ELM特征映射的kNN算法,利用ELM特征映射,将原始数据映射到这种高维特征空间当中,使得数据间变得更加线性可分,即数据结构会变得简单,因此,在利用kNN算法进行分类时,利用ELM特征空间中对应的特征数据代替原始空间中的数据进行分类将会取得更好的分类效果.最后,来自MNIST和UCI中的几个数据集的仿真实验进一步验证了该算法的优良性能. 相似文献
14.
针对极限学习机在高维度、含噪声数据集中需要大量隐含层节点来保证分类性能的问题,设计了镜像极限学习机.该算法使用伪逆法确定输入权值,随机生成输出权值和偏置,在对数据进行分类时,它仅需极少的隐含层节点.为了提升镜像极限学习机的分类性能和抗噪性,将它与去噪自编码器相结合.利用去噪自编码器对输入数据进行特征提取,并将提取到的特征作为镜像极限学习机的输入数据,再进行网络训练.在无噪和含噪声的MNIST,Fashion MNIST,Rectangles和Convex数据集中,将基于去噪自编码器的镜像极限学习机与ELM,PCA-ELM,SAA-2和DAE-ELM作对比实验,结果表明,基于去噪自编码器的镜像极限学习机的综合性能最优,用于分类的网络隐含层节点数最少. 相似文献
15.
基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现PMU的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(ICNN)与双向长短时记忆网络(BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。 相似文献
16.
目的 针对比例延迟微分方程,提出一种基于极限学习机(ELM)算法的单隐藏层前馈神经网络训练方法,并将该方法推广到求解双比例延迟微分系统。方法 首先,构建一个单隐藏层前馈神经网络并随机生成输入权值和隐藏层偏置;然后,通过计算系数矩阵使其满足比例延迟微分方程及其初值条件,将其转化为最小二乘问题,利用摩尔-彭罗斯广义逆解出输出权值;最后,将输出权值代入构建的神经网络便可获得具有较高精度的比例延迟微分方程数值解。结果 通过数值实验与已有方法的结果进行比较,验证了该方法对处理比例延迟微分方程与双比例延迟微分系统的有效性,且随着选取的训练点和隐藏层节点数量增多,所得到的数值解精度和收敛速度也随之增加。结论 ELM算法对处理比例延迟微分方程以及双比例延迟微分系统具有较好的效果。 相似文献
17.
针对原始振动数据无监督特征学习问题,提出了一种深度小波自动编码器(deep wavelet automatic encoder,DWAE)与鲁棒极限学习机(extreme learning machine,ELM)相结合的滚动轴承的智能故障诊断方法。首先,利用小波函数作为非线性激活函数设计小波自动编码器从而有效地捕获信号特征。其次,利用多个小波自动编码器构造一个深度小波自动编码器来增强无监督特征学习能力。最后,采用鲁棒极限学习机作为分类器,对不同的轴承故障进行分类识别。用该方法对实验所得的轴承振动信号进行对比分析,结果验证了该方法能够在原始振动数据无监督特征学习的条件下该方法优于传统方法和标准深度学习方法。 相似文献
18.