共查询到18条相似文献,搜索用时 62 毫秒
1.
考虑静态安全约束的暂态稳定极限计算 总被引:1,自引:0,他引:1
将求解暂态稳定极限问题描述为一个以输电线路或输电断面输送功率最大为目标,以静态安全及暂态稳定为约束条件的最优参数选取问题.并将一种新的进化算法——粒子群游(PSO),应用于暂态稳定极限计算.算例表明,此种计算方法克服了静态安全约束等因素对稳定极限的影响,因而减小了计算误差,提高了计算结果的精确性。 相似文献
2.
针对传统基于机器学习的电力系统暂态稳定评估方法存在准确率偏低和泛化能力不足的问题,提出了一种基于特征选择和改进随机森林的在线暂态稳定评估方法。首先,通过最大化联合互信息挖掘电网运行数据之间的相关性,筛选出具有代表性的关键特征子集;然后,考虑到电力系统数据库中稳定样本与失稳样本之间的类别不平衡问题,通过改进bootstrap抽样和对决策树进行加权处理,增强随机森林对失稳样本的识别能力;最后,基于改进的随机森林算法,建立关键特征数据与暂态稳定标签之间的映射关系。实验结果表明,所提方法具有较高的准确性和较强的鲁棒性,能够满足在线应用的需求。 相似文献
3.
随着大规模新能源并网以及新装置的不断应用,电力系统暂态稳定问题日益复杂,为进一步提升暂态稳定评估(transient stability assessment, TSA)的精确性和可靠性,提出一种基于多层CatBoost的TSA方法。首先,以电力系统故障前的稳态运行变量作为输入特征,采用一种最大相关最小冗余(maximal relevance minial redundancy, mRMR)集成方案,从输入特征中筛选出多组不同的关键特征集。然后,利用这些关键特征分别单独训练多个CatBoost模型,建立多个CatBoost驱动的TSA模型,并结合多个训练好的CatBoost模型构建TSA综合模型。在暂态稳定分析时,综合多个CatBoost模型的分析,通过多数投票表决方式判定最终评估结果。最后,在IEEE 39节点系统和某省级电力系统上进行性能测试实验。测试结果表明:所提出的TSA综合模型不仅具有极高的预测精度,而且拥有良好的泛化能力和鲁棒性。 相似文献
4.
随着清洁能源替代和电力系统电力电子化的趋势增强,传统的基于理论模型的电力系统数值仿真方法将面临新的挑战,不依赖于元件模型的数据驱动型电网稳定评估方法逐渐受到重视.基于极限学习机(ELM)理论,提出适于在线应用的电力系统暂态稳定评估方法.首先,通过调节稳定和失稳仿真样本的比例进行样本筛选,减轻样本集中失稳样本较少而引起的样本不均衡现象,并引入递归特征消除法进一步处理样本集;然后利用交叉验证法优化ELM的网络结构,并用处理后的样本集进行ELM的训练;最后,根据神经网络的输出结果预测系统的稳定性,并改进泛化能力评价标准对结果的可靠性进行评估.算例分析表明,递归特征消除法可明显降低特征冗余度,改善模型性能,所提出算法的训练时间短且具有较高的预测准确度. 相似文献
5.
如何有效地均衡可行区域与不可行区域的搜索是约束优化中的关键问题。为使进化算法获得可行的全局最优解,分析了在进化过程中如何对待好的不可行解的问题,通过分析随机排序中比较概率对可行解最终位置的影响,提出一种动态随机选择策略,并以多个体差分进化为框架实现了相应算法。实验对比分析结果说明了这一策略的有效性。 相似文献
6.
介绍了置信规则库转换(BRB-transformation,BRB-T)模型以及运用置信规则库(belief rule base,BRB)推理进行寿命评估的过程.针对当前的置信规则库学习方法还存在依赖初始解、规则条数偏多、系统结构复杂的问题,结合装备贮存寿命评估的BRB-T模型,提出了基于差分进化算法(DE)对该模型的BRB参数进行学习的优化方法.最后,通过某航天设备的失效数据进行了验证.结果表明,该优化方法能够有效地对模型的BRB参数进行优化;并且优化后的模型可以准确地对产品的寿命进行评估. 相似文献
7.
一般的神经网络的结构是固定的,在实际应用中容易造成冗余连接和高计算成本。该文采用了协同量子差分进化算法(cooperative quantum differential evolution algo-rithm,CQGADE)以同时优化神经网络的结构和参数,即采用量子遗传算法(quantum genetic algorithm,QGA)来优化神经网络的结构和隐层节点数,采用差分算法来优化神经网络的权值。训练后的神经网络的连接开关能有效删除冗余连接,算法的量子概率幅编码和协同机制可以提高神经网络的学习效率、逼近精度和泛化能力。仿真实验结果表明:用训练后的神经网络预测太阳黑子和蒸汽透平流量具有更好的预测精度和鲁棒性。 相似文献
8.
《广西大学学报(自然科学版)》2021,46(4)
为了有效辨识电力系统暂态失稳后发电机的动态行为,以失稳后的功角数据为输入特征信息,提出一种基于知识发现和分层极限学习机(ELM)的失稳模式辨识方法。首先利用ELM快速辨识系统暂态不稳定的功角样本。为了充分利用不稳定样本自身结构来挖掘关键信息,引入知识发现算法KODAMA以获取发电机的不稳定动态行为模式,构建失稳功角模态集。然后,根据所得模态数据集,为提高不稳定模式辨识的准确性,设计了分层ELM的辨识策略以辨识发电机的失稳模式。最后,在Nordic系统中验证所提方法的有效性,测试结果表明提出的辨识方法能够准确地辨识失稳模式,且在保证尽可能高精度的前提下,具有相对快速的评估速度。 相似文献
9.
特征选择是高维小样本癌症基因数据分析的首要和关键步骤,但是现有特征选择算法存在特征子集依赖于训练样本且随训练样本不同而变化的问题.为了解决特征选择过程的特征子集不稳定问题,提出一种基于核极限学习机的集成特征选择方法,利用5-折交叉验证划分原始数据,对各训练集继续采用5-折交叉验证进行划分并进行特征选择,以所得5个特征子... 相似文献
10.
图像增强是图像处理中重要的步骤之一,基于非完全Beta函数变换的图像增强办法能够获得较为理想的增强效果.然而合理的Beta函数参数选取一直没有得到很好的解决,常需要人工干预或者计算非常耗时.差分进化算法是一种新型的进化计算方法,具有自适应、自组织等智能特性和强大的寻找优化解的能力.这里将差分进化算法用于Beta函数参数的自适应选取,实现了基于差分进化算法的非完全Beta函数图像增强方法,实际图像增强实验结果表明了该方法的有效性和可行性. 相似文献
11.
基于SaCE-ELM的地铁牵引控制单元快速故障诊断 总被引:1,自引:0,他引:1
地铁牵引控制单元(TCU)在地铁运行过程中有重要的作用,及时有效地对其进行故障诊断,是保证地铁正常运行的重要环节.针对传统故障诊断方法的学习速度慢、易陷入局部最优、预测精度较差等缺点,提出一种使用自适应差分进化算法(SaCE)进行优化的极限学习机(SaCE-ELM),即通过自适应差分进化算法对极限学习机的输入权重、隐含层参数和输出权重进行优化.其中,差分进化算法的变异策略通过基于混沌序列的自适应机制产生,其他参数使用正态分布随机生成;网络的输出权重使用Moore-Penrose广义逆矩阵计算得出.SaCE-ELM不需要人工选择变异策略和参数,自适应策略比SaE-ELM更加简单.实验结果表明,与E-ELM、SaE-ELM、LM-NN、SVM相比,SaCE-ELM具有更好的预测精度.此外,SaCE-ELM在所有数据集上训练时间比SaE-ELM和SVM更少,有效地改善了生成模型的效率. 相似文献
12.
为了保证运算时效的同时,提高复杂数据的分类精度,提出了基于多目标蜂群算法和极限学习机的数据分类算法。该方法以最小的特征个数和最高的分类精度为优化目标,利用改进的多目标蜂群算法对数据的特征个数和分类器参数进行寻优,针对多个有代表性的数据集进行仿真,结果表明所提出方法的有效性。 相似文献
13.
针对特征选择问题,引入一种具有混合编码的二进制差分演化算法,融合随机和优选两种方法自适应对特征子集个数进行控制,并在评价函数中引入权重和相关性抑制.利用淋巴瘤细胞核形态特征进行实验,结果表明该方法能有效进行特征选择. 相似文献
14.
极限学习机是一种新型的单隐层前馈神经网络,在训练网络的过程中随机给定输入层权值和隐藏层偏差,所以训练速度非常快,但却导致了输出不稳定.提出了一种基于AdaBoost的极限学习机,把极限学习机作为AdaBoost的基本分类器,通过改变输入数据的权重,使得极限学习机的分类性能得到提升.实验结果表明了该方法与极限学习机和传统的神经网络相比,能够提高极限学习机的学习性能,并且使极限学习机输出更加稳定. 相似文献
15.
The local receptive fields based extreme learning machine (ELM-LRF) method was utilized to learn the effective features from the acquired gene expression data to help enhance cancer diagnosis and classification. Firstly, the principal component analysis (PCA) method was implemented to process the dataset. Secondly, the features mapping to map our dataset were constructed to the specific feature space. Finally, the features to train the learning model were used to get the final ELM feature extraction model. The experiment shows that the proposed algorithm outperforms almost all the existing methods in accuracy and efficiency. 相似文献
16.
赵玮 《华侨大学学报(自然科学版)》2017,(1):105-108
针对机器学习聚类模型在特征选择时存在的问题,首先,对特征选择在聚类模型中的适用性进行分析并对其进行调整和改进.然后,基于R语言中的递归特征消除(RFE)特征选择方法和Boruta特征选择方法进行特征选择算法设计.最后,应用聚类内部有效性指标,对在线品牌忠诚度聚类模型优化结果进行分析,进而对特征选择方法进行比较研究.结果表明:Boruta特征选择方法更具优势. 相似文献
17.
乳腺肿块检测是防治乳腺癌的有效途径,基于乳腺X射线图像特征模型的极限学习机(ELM)分类算法已被应用于计算机辅助检测乳腺肿块中.针对由于特征间的依赖性导致的ELM学习效率和检测准确度低的问题,提出了基于特征选择ELM的乳腺肿块检测算法.利用影响值选择、序列前向选择和遗传选择等方法进行特征选择,进而利用该结果提高ELM的性能.通过490例来自辽宁省肿瘤医院的乳腺X射线图像的实验表明,基于特征选择ELM的乳腺肿块检测算法能有效提升乳腺肿块检测的效果,其中以遗传选择对ELM性能提升最明显. 相似文献
18.
管霖;郑传材;王律;章小强;王同文 《华南理工大学学报(自然科学版)》2010,38(3)
输入特征选择与评估模型解释是基于人工智能(AI)的电力系统暂态稳定评估(TSA)方法研究的关键点。本文采用数据驱动的特征选择和规则提取算法,通过仿真实例客观的评估关键特征,并提取稳定判别规则。在特征选择中采用聚类分析算法评价特征的性能,采用遗传算法进行特征组合优化。应用基于关联规则的分类器构造算法,客观地生成暂态稳定评估规则。通过在10机39节点系统和3机9节点系统中的应用结果对比分析,在53维候选特征中得出了相对通用的暂态稳定评估关键特征集。研究结果同时表明,针对不同规模的电网,基于动态特征的稳定判别规则整体上具有明显的规律性和一致性。同时随着系统规模的扩大,在分类边界附近的稳定判别表现出一定的复杂性和特异性。 相似文献