首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
给出了GWCN环的一些例子,研究了GWCN环的扩张,讨论了GWCN环的正则性和clean性。  相似文献   

2.
Morphic环的一些性质   总被引:2,自引:0,他引:2  
文章研究了M orphic环的一些性质,证明了:(1)约化的Morphic环是左(右)遗传的;(2)约化环R是Morphic环■M∈MR,M是平坦模;(3)约化环R是Morphic环■每个循环左R-模是GP-内射的R是左PP环和左GP-内射环。  相似文献   

3.
本文给出了分别由约化环类和s-弱正则环类确定的上根的一些基本性质。作为推论,指出[5]中的一个结论是错误的,并给出了修正后的结果。  相似文献   

4.
设R是环, G是群,σ是从G到R的自同构群的映射。证明了若R是约化的右PS环, G是有序群,σ是弱刚性的,则Malcev-Neumann环R*((G))是右PS环。 同时还证明了,在上述条件下,Malcev-Neumann环R*((G))的子环R*(G)也是右PS环。  相似文献   

5.
利用ACS环、pp环、弱连续环等给出正则环的若干刻画:1)R是正则环当且仅当R是左C2环和左pp环当且仅当R是左ACS环、在C2环和左非奇异环;2)R是强正则环当且仅当对每个α∈R,有ι(α)的R的理想,且奇异单右R-模是平坦模当且仅当R是右SF环,且对每个α∈R,有ι(α)是R的理想。  相似文献   

6.
证明了约化环R上的两类特殊上三角形矩阵环是Armendariz环和斜Armendariz环.  相似文献   

7.
首先引入弱正则理想的概念,得到了弱正则理想的一些性质,接着讨论了半群环的弱正则性.  相似文献   

8.
关于正则环的若干性质   总被引:1,自引:0,他引:1  
本文通过P-平坦模的性质,研究了正则环的一些性质,并给出了正则环的一些有益刻画,得到了R为正则环当且仅当每一个奇异右R-模P-平坦当且仅当每一个循环奇异右R-模P-平坦当且仅当P-平坦右R-模的同态像P-平坦这一主要结果。  相似文献   

9.
环的弱理想(Ⅰ)   总被引:3,自引:2,他引:3  
通过对环的子环所满足的条件进行加强,推广了环的思想概念,引入了弱理想的概念,讨论了弱理想的基本性质,并证明了:(1)环R的理想类是R的弱理想类的真子集。(2)一个含有单位元的交换环R是除环的充分必要条件是R没有真弱理想。  相似文献   

10.
本文主要讨论了GWCN环的若干性质以及它与一些特殊环的关系,研究了GWCN环的强正则性,证明了:若R是有Abelian极大左理想的GWCN环,那么下列条件等价:(1)R是强正则环;(2)R为左GP-V’-环,且R的极大本质左理想均为广义弱理想;(3)R是左GP-V’-环,且R的极大本质右理想均为广义弱理想.  相似文献   

11.
证明了对于一个环R,下列条件等价:(1)R是左凝聚的;(2)对任意正整数n,Mn(R)是左1-凝聚的;(3)Ext^2R(R/I,N)=0对于任意有限生成左理想I及F-内射模RN成立;(4)若N1≤N都是F-内射左R-模,则N/N1也是F-内射模.  相似文献   

12.
引进了GQ—正则环,它是几乎拟正则环的推广,以模理想及模的观点进行刻化,并得了若干性质。  相似文献   

13.
FCG-内射模、FCGP-内射模与某些环   总被引:3,自引:1,他引:3  
定义了左FCG-内射模和左FCGP-内射模,研究了它们的一些性质,用左FCG-内射模刻画了左V-环。称一个环R为左FCG-遗传环,如果投射左R-模的有限余生成了模是投射的。给出了环R为左FCG-遗传环的一些等价条件和左FCG-遗传环为半单环的条件。当R为左余Noether环时,R为左FCG-遗传环当且仅当R的每个有限余生成左理想是投射的。左FCG-遗传环是Morita不变的。  相似文献   

14.
SomeRingsCharacterizedbyModulesYaoZhongping(LiaoChengTeacher’sColegeLiaoChengShandong252059)AbstractWecharacterizehereditaryr...  相似文献   

15.
本文推广了[1]中的两个结论,在附加条件下,肯定回答了[1]中提出的一个问题,即如果分次环是半完全的,R_0是否也是半完全的?  相似文献   

16.
设R是一个环.在文献(M.Y.Wang,G.Zhao.Acta Mathematica Sinica,2005,21:1451-1458.)中,如果从环R的任意右理想到R自身的每个态射都能被表示成为R中的某个元素左乘形式,那么该环R被称为右极大-内射环.给出了V-环、半单环的等价刻划;并证明了如果一个凝聚-SF环R是余挠的,那么R是极大-内射的;以及表明了极大-内射环的存在性:极大-内射生成子的自同态环是极大-内射的.最后,证明了一个右极大-内射左完全环R是quasi-Frobenius环当且仅当它满足左W-条件.  相似文献   

17.
本文讨论弱本原环的稠密性问题,主要结果是: 环R是弱本原的当且仅当存在(D,V,M)使得 (1)如果x,y≠0∈V,则存在r,s∈R使xr=ys≠0。 (2)如果x_1,x_2∈M是D上线性无关元,则存在非零元r,s∈R使x_1r=x_2s,x_2r=x_1s且S|Dx_i是自同构,i=1,2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号