首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
对拓展的2+1维Sine-Gordon方程,利用双线性方法和改进的同宿测试方法,得到了一些周期孤立波解,这些结果有助于加深对非线性波在高维空间的动力学性质的了解.  相似文献   

2.
利用Hirota双线性方法,首先得到了非线性弦振动方程的孤子解,图形分析表明,此方程存在阶梯状的双向孤子解,既包括迎面型碰撞的孤子解,也包括追赶型碰撞的孤子解.其次,得到了非线性弦振动方程4种类型的周期孤立波解.最后,借助于Riemann theta函数,得到了非线性弦振动方程的拟周期解,在极限情况下,该拟周期解可以退化为孤子解.  相似文献   

3.
扩展了Hirota法,构造出Kadomtesv-Petviashvili方程的新的孤波解,即将Hirota法中的测试函数用新的测试函数来替代,得到了Kadomtesv-Petviashvili方程的周期孤立波解.显然扩展的Hirota方法也可以求解其他类型的非线性发展方程.  相似文献   

4.
用新的测试函数来替代Hirota法中的测试函数,寻求周期和孤立波结合的解.用这个新方法得到(3+1)雏K-P方程的精确周期孤立波解.这个结果说明(3+1)维K-P方程存在周期孤立波.  相似文献   

5.
文章扩展Hirota双线性法,引用新的函数结构,找到(2+1)维Sawada-Kotera方程的系列精确孤立波和周期孤立波解,这些结果,有助于对非线性波在高维空间的动力学性质的了解,尤其有助于对高维模型中的局域结构,相互作用是否与一维系统有着本质差别的探究。  相似文献   

6.
2+1维非线性发展方程的多种周期解   总被引:1,自引:0,他引:1  
利用一个辅助椭圆方程的解,将求解2 1维非线性发展方程精确解的问题转化为一个代数方程进行求解.借助计算机的符号计算.求得了KP方程和2 1维mKDV方程的多种精确周期解.在极限条件下,这些周期解退化为孤立波解.  相似文献   

7.
一种构造Burgers和KP方程孤立子解和周期解的方法   总被引:3,自引:3,他引:0  
构造了非线性发展方程的孤立子解和周期解的形式,并且成功的用于求解(2+1)维Burgers方程和(3+1)KP方程,得到了这两个方程的一些行波解.  相似文献   

8.
运用Hirota方法解析求解Zakharov-Kuznetsov(ZK)方程,得到了ZK方程单孤立子解、双孤立子解以及多孤立子解的具体表达式.用三维图形展示了ZK方程双孤子的特殊相互作用过程.  相似文献   

9.
通过引入一个简单的线性变换,将(2+1)维Zakharov-Kuznetsor(ZK)方程化为一维Korteweg-de Vries(KdV)方程,然后利用KdV方程的多孤立波解得到了ZK方程的多孤立波解.结果表明,此时ZK方程的多孤立波为彼此平行的线孤子.  相似文献   

10.
扩展了Hirota法,即将Hirota法中的测试函数用新的测试函数来替代,并利用扩展了的方法来构造(3+1)维孤子方程的新的周期孤波解、周期双孤波解、双周期双孤波解.显然扩展的Hirota方法也可以解其他一些非线性发展方程.  相似文献   

11.
(2+1)维Burgers方程的新的精确解   总被引:2,自引:0,他引:2  
构造一种新的tanh函数法求解(2 1)维Burger方程,得到了这个方程的一些新的精确解.  相似文献   

12.
(2+1)维BBM方程的精确解   总被引:4,自引:0,他引:4  
通过行波约化一类(2 1)维非线性波动方程和建立与立方非线性Klein-Gordon方程间变换的联系,由此得到其精确解和孤立波解.  相似文献   

13.
利用埃尔米特变换求出(2+1)维Wick型随机KdV的精确解.通过埃尔米特变换把随机(2+1)维Wick型的随机KdV方程变成(2+1)维变系数KdV方程, 利用齐次平衡法求出方程的精确解, 并通过埃尔米特的逆变换求出方程的随机解.  相似文献   

14.
(2+1)维耦合KdV方程的类孤子解   总被引:2,自引:2,他引:0  
利用齐次平衡原则,导出T(2 1)维Kdv方程的Baecklund变换,然后借助于所求出的Baecklund变换。求出了方程一般形式的类孤子解。  相似文献   

15.
通过扩展实参数到复参数,利用Hirota双线性方法和一组变换,构造了含两个特殊常系数的修正的广义Vakhnenko方程的多重复合型解.用图形展示了复合型解的详细结构,其中有非奇异的复合型解、loop孤立子、cusp孤立子、线孤立子以及它们的相互作用情况.  相似文献   

16.
引入1个简单的变换,把(3 1)维破裂孤子方程化为一维的KdV方程,从而通过已知KdV方程的解得到了(3 1)维破裂孤子方程的若干精确解.这种方法可以推广开来,方便地建立起某一高维方程和其他低维非线性方程的联系,然后通过求解低维的非线性方程来找到高维非线性方程的精确解.  相似文献   

17.
由Weiss,Tabor和Carnevale(WTC)提出的Painlevé分析法是目前最有效且应用广泛的直接判别非线性偏微分方程的方法之一.借助符号计算软件Maple,首先将判断非线性系统可积性的WTC方法应用于(2+1)维Lax-Kadomtsev-Patviashvili(Lax-KP)方程中,通过领头项分析得到两种情况.然后分别寻找共振点,并验证共振条件是否成立,判别了(2+1)维Lax-KP方程具有Painlevé不可积性.应用Painlevé标准截断展开和非标准截断展开两种方法,构造了Lax-KP方程不同形式的精确解,通过适当选取常数值发现这些精确解都是扭结形状的孤波解.  相似文献   

18.
利用方程代换思想,对广义Riccati方程作变系数多项式展开,获得了(2+1)维变系数KdV方程的多种新精确解.相应地,亦得到近轴KdV方程的新精确解.  相似文献   

19.
利用扩展齐次平衡法,求出了包含三个任意函数的(2+1)维Broer-Kaup方程的精确孤子解,所用方法简单、直接,并可推广到其它非线性方程(组)。  相似文献   

20.
研究(N+1)维广义的Boussinesq方程的非线性波解.利用动力系统定性理论和分支方法,获得它的多种非线性波解的精确显式表达式,这些解包括孤立波解,爆破解,周期爆破解和扭波型解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号