首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
魏奉思 《科学通报》1985,30(13):1001-1001
在日地关系的研究中,耀斑引起的行星际激波(以下简称耀斑-激波)在日地空间的传播是人们十分关注的课题之一。多年来由于空间飞船测量局限在黄道面附近,诸如激波的形状、传播的方向特征和减速等基本问题是了解得很不够的。然而这些问题对于研究太阳耀斑活动事件,对地球物理环境的变化却具有头等的重要性。本世纪七十年代中期由于行星际闪烁技术的发展,人们开始尝试利用这种IPS观测来研究黄道面以外空间耀斑-激波的传播特性。Pinter  相似文献   

2.
地球上有天气,太空中也有天气吗? 答案是当然有了!太空天气是指在太阳系内地球周围的太空环境发生的变化.太空天气包括太阳、太阳风、近地空间以及高层大气中的任何条件和事件.太阳会发生太阳风、太阳耀斑、太阳射电爆发、太阳辐射风暴、太阳高能粒子喷发、日冕物质抛射和太阳黑子爆发等,引起太空天气的变化.银河系中拥有3000 多亿颗...  相似文献   

3.
于晓霞  卢红  石峰  郭义庆 《科学通报》2008,53(14):1617-1631
太阳中子事件是与耀斑活动相关的偶发性即刻粒子事件, 主要表现为地面宇宙线探测装置的计数瞬时突增. 太阳中子携带着爆发源区的物理信息: 耀斑大气的元素组成、大气高度、磁场的会聚程度以及磁流体湍动等. 相对于其他带电粒子, 中子能够不受太阳磁场和行星际磁场的束缚而直达地面. 目前, 对太阳中子事件的理论研究, 主要是通过蒙特卡罗模拟, 考虑太阳耀斑环中磁场的螺旋角散射作用和磁镜效应, 计算耀斑磁环模型里各向异性中子的产生与太阳大气高度、时间、角度和能量间的关系, 计算逃逸中子的角分布和能谱, 以及逃逸到地球附近中子的能谱. 观测方面, 主要是结合地面中子监测器记录的超出时间与空间探测到的g射线核谱线发射峰值的时间差, 利用飞行时间方法(Time of Flight Method), 考虑中子监测器的探测效率和中子在地球大气中的衰减因素, 反演日面处的中子能谱. 本文依据已确定的10例太阳中子事件, 评述基本的观测特征, 介绍相应的观测仪器, 探讨太阳中子能谱计算的两种方法(观测法和模型法), 比较不同方法获得的计算结果; 并依托羊八井太阳宇宙线探测装置(中子监测器、太阳中子望远镜), 报道对太阳中子的初步交叉探测特征(1998年11月28日GLE事件和2005年1月20日GLE事件), 指出目前亟待解决的问题.  相似文献   

4.
太阳耀斑是指发生在太阳表面局部区域中突然和大规模的能量释放过程.它是空间环境的主要扰动源,对地球空间环境造成很大影响.太阳耀斑预报是空间天气预报的重要组成部分,对其研究具有重要的实用价值和科学意义.现有的大部分太阳耀斑预报模型是从观测数据提取预报因子,利用各种统计和数据挖掘技术建立预报因子与耀斑发生之间的关系模型,利用建立的模型对未来时间的耀斑发生进行预报.在预报研究中,预报因子、预报方法和预报模型是3个主要研究领域.其中预报因子的选取和数据处理尤为重要,是建立预报模型的前期工作.预报因子主要采用太阳黑子、磁场参量和分形因子等.预报方法包括统计方法、机器学习方法和数据同化方法.统计方法在早期的耀斑预报建模中用的较多,随着数据挖掘技术的发展,越来越多的机器学习方法应用到预报模型中并取得了较好效果.而近期发展的数据同化方法有更好的模型修正能力.预报模型早期基本使用静态模型,后来发展起来的动态模型具有更强的优势;而自组织临界模型在物理方面给了耀斑发生更多的解释.本文分别从这3个方面总结了耀斑预报的研究进展,结合中国科学院国家天文台太阳活动预报中心的工作,评述了一些重要的研究成果.最后,对未来的研究方向进行了总结和展望.  相似文献   

5.
《科学24小时》2013,(Z1):27
<正>4月15日,美国宇航局公布了一些令人惊叹的太阳图片。图片显示,今年最大规模的太阳耀斑已经爆发。此次太阳耀斑于4月11日猛烈爆发,导致地球上的无线电暂时中断。科学家表示,今年是以11年为周期的太阳活动极大年,本年中最猛烈的太阳耀斑还未发生。此次太阳耀斑被核定为M6.5级太阳风暴,这是中等级别的太阳耀斑。M6.5  相似文献   

6.
<正>预测太阳耀斑是困难的,因为我们并不清楚耀斑如何被触发。虽然在耀斑发生时,望远镜可以观测到并提供一些警告,但高能粒子可以在短短8分钟内到达地球——这不但可能会危及宇航员的健康,而且还会在我们作出反应之前就损坏卫星。近日,一个日本研究团队利用与太阳耀斑相关的强磁场设计的"卡帕方案",可以在太阳耀斑发生前数小时预测其发生。研究团队将该方法应用于2008年至2019年期间的数据,结果能够提前24小时预测9个最大的耀斑(被称为"X级耀斑")中的7个。这种预测太阳耀斑的新方法可以让我们在太阳耀斑发生前提前做好准备,规避潜在风险。  相似文献   

7.
这是一个有关日本的日地物理学(STP)研究活动的贡献和将来计划的报告。此报告曾在1982年5月在加拿大首都渥太华召开的日地物理讨论会上宣读过。回顾过去,我们参加国际磁层研究(IMS)计划和太阳峰活动。在IMS期间发射了EXOS-A、EXOS-B和ISSb三颗磁层——电离层探测卫星。我们希望它们对了解磁层做出较大的贡献。在1981年发射的ASTRO-A卫星,它的任务是对太阳耀斑进行X-射线照象,以便得到若干个有趣的耀斑事件的图片。  相似文献   

8.
王水 《科学通报》1986,31(1):14-14
为了理论上解释发生在太阳大气和地球磁层中的一些爆发现象(例如,太阳耀斑、磁层亚暴等),许多作者认为大尺度空间中的微弱磁场,是导致空间等离子体中这些引人注目事件的主要能源,而磁力线重联过程是自由磁能释放的重要机制。除大量的解析研究以外,有些作者还对一些特殊情况下的磁力线重联过程进行了数值模拟和实验室研究。本文将依  相似文献   

9.
基于自动特征提取方法的太阳耀斑预报模型   总被引:1,自引:0,他引:1  
在太阳耀斑预报模型中,首先需要从原始观测数据中提取刻画太阳活动区特性的物理特征参量,然后使用统计或机器学习方法寻找物理特征参量与太阳耀斑发生的关系,以达到建立太阳耀斑预报模型的目的.其中,太阳活动区物理特征的提取在整个建模过程中发挥着重要的作用,活动区物理特征的优劣直接决定着预报模型性能的高低.然而,随着机器学习技术的发展,机器学习方法中的深度学习算法能够从原始数据中自动提取特征,并建立预报模型.本文利用深度学习方法建立了一个太阳耀斑预报模型.与先提取活动区物理参量、再建立预报模型的传统机器学习方法相比较,本文所建立的预报模型具有更好的预报性能.  相似文献   

10.
张衡 《科学通报》1991,36(10):760-760
关于太阳射电辐射中快速涨落的机制问题目前尚无定论,对存在于其中的准周期脉动的研究也刚刚开始。Kosugi等人指出,在耀斑脉冲相中,电子和离子同时被一连串的准周期脉冲所加速。同时,能量释放过程也可能是某种周期性的。这种周期性脉动可能作为某种MHD或等离子体过程的结果。例如,两个电流环聚合的不稳定性,可能是电子和离子的快速准周期加速的机制。周期脉动也被解释为激波通过磁通管时触发的MHD驻波的周期性变  相似文献   

11.
张剑虹 《科学通报》1991,36(20):1559-1559
一、引言 近太阳空间,同耀斑一类日冕瞬变过程相联系的高速等离子体物质和背景介质之间是否存在重要的动力学相互作用过程,是了解日地系统能量传输过程的关键问题之一,具有初边值的意义,该问题于70年代中期提出,由于空间观测的局限,一直进展甚微,近几年来,我国一些研究工作发现,耀斑-激波在于午面内的传播,将由于双极冕洞磁场位形(近太阳为盔形)  相似文献   

12.
陆全明 《科学通报》2011,56(7):447-447
开展对空间物理和空间天气学的研究, 有助于更好地了解并预报空间环境中发生的灾害性空 间天气事件, 为国家的航天和通信事业服务. 作为一个跨学科的研究领域, 对空间物理与空间天气 学的研究需要不同领域的科技工作者的共同关注, 促进其有序、快速地发展. 本专题就“空间物理与 空间天气学”领域中若干前沿的科学问题作了评述, 分别是无碰撞磁重联中的电子动力学、地球磁 尾等离子体片中的高速流、地球内磁层中的高能粒子, 以及电离层和太阳活动的关系. 主要内容介 绍如下. 磁重联提供了一种快速地将磁场能量转化为等离子体动能和热能的物理机制, 它与空间物 理和空间天气学中的许多爆发现象密切相关, 本专题的第一篇文章讨论了电子动力学行为在无碰 撞磁重联结构形成中的作用, 以及电子在其中的加速机制. 等离子体片中的高速流则是一种经常出 现在磁层剧烈扰动期间的现象. 第二篇文章简单回顾了高速流研究的历史, 介绍高速流的成因及与 极光的关联, 探讨了其与等离子体磁结构的异同及其与背景等离子体的相互作用, 以及高速流在磁 层亚暴过程中的作用. 辐射带中的能量电子与离子是首要的空间天气威胁, 理解这些粒子如何在辐 射带中被加速是空间物理和空间天气学领域的主要挑战之一. 第三篇文章总结了行星际激波在内 磁层激发的超低频(ULF)波对“杀手”电子与能量离子的快速加速的最新进展. 秉含着不同时间尺度 的太阳电磁辐射变化是调制电离层的主要因素, 电离层对太阳活动性的依存关系是认知电离层结 构与演变的基础. 第四篇文章简要地介绍了最近一些年在电离层的太阳活动性依赖特性方面取得 的进展. 有关内容供感兴趣的科技工作者参考.  相似文献   

13.
日地科学是研究太阳的能量、动量和质量如何经过行星际空间、地球磁层、电离层和中性大气而影响地球环境的科学。它有时也称为日地物理、日地关系、日地研究等。日地科学涉及太阳物理、行星际物理、磁层物理、电离层物理、热层及大气物理和化学,以及地球科学的有关领域,它更着重于研究日地系统不同区域之间的相互关联,以及这种关联的因果关系。目前的探测水平使人们更多地侧重于相邻区域之间的耦合过程。 在公元前1500年不迟于商代就已记载了最先看到的太阳黑子。我国史书中丰富的太阳  相似文献   

14.
太阳活动太阳活动是指太阳表层的各种活动变化的总称。太阳活动的强弱直接和间接影响到地球物理现象及人类活动,所以各国都十分重视对太阳的观测和研究。太阳黑子时多时少,表示太阳活动变化。又由于太阳黑子跟太阳表面的其他活动现象(如耀斑爆发,日冕物质抛射)密切相关,因此人们用太阳黑子相对数(简称黑子数)来代表太阳活动的强弱。黑子数多时,表明太阳  相似文献   

15.
从人类历史的角度看,太阳是十分稳定的。但是仔细观察太阳,表面翻滚对流,就像烧开水一样。再稍远一点看,太阳表面有一块块“黑子”,这是由于这些区域比周围的温度低造成的视觉假象。偶尔,太阳还会喷出巨大的“火苗”,有几十个地球大小,天文学家称之为“太阳耀斑”。受其影响,短波通讯被阻断,对人造地球卫星、空间站、宇航员的安  相似文献   

16.
胡文瑞 《科学通报》1981,26(7):420-420
随着观测特征不断积累和丰富,太阳耀斑的理论模型也越来越多。空间观测的结果似乎只要求活动区磁场是双极拱形,与大量的电流片模型不一致。耀斑过程可能并不总是一种机制。本文从理论上进一步讨论太阳耀斑的级联爆发模型。对流区的波动能量转换为活动区的横向磁场能量,由于扭转不稳定性使磁能释放,并转换为激波动能,活动区激发的级联  相似文献   

17.
20 0 0年是一个太阳活动高峰年 ,地球上的一切生命又经受了数月的较频繁出现的耀斑高能辐射的考验 .在这一年 ,我们从各种一般性报刊上经常见到关于加强防护太阳紫外线的忠告和措施 ,但是却未见有人提出是否需要防护太阳X射线的问题 .实际上 ,当太阳上的大耀斑爆发时 ,不仅紫外线增强 ,X射线也大大增强 ,一般来说 ,紫外线强度可增加数倍 ,而X射线可增加数十倍或更高[1] .尽管地球大气对X射线和紫外线都有很好的阻挡作用 ,但是大气对于X射线的透明度并不比紫外线差 .既然众所周知紫外线对人体健康有一定影响 ,那么太阳X射线爆发 ,即X…  相似文献   

18.
到过海边的人,都会发现海水有周期性的涨落现象,每天大约涨落两次。海水这种有规律的周期运动。就是海洋潮汐现象。古人把海水白天的上涨叫作“潮”,晚上的上涨叫做“汐”,合称为“潮汐”。海洋中发生的潮汐现象被称为海洋潮汐。这是由于太阳和月球对地球各处引力的不同造成海水有规律周期性的涨落现象。  相似文献   

19.
许敖敖 《科学通报》1993,38(23):2156-2156
1 引言观测显示耀斑的发生与暗条活动密切相关。而Van Tend和Kuperus以及以后不少作者则从理论上探讨了暗条作为活动区电流,它的演化和运动与耀斑过程的物理联系。然而,由于高质量观测资料的取得极其困难和耀斑过程的复杂性,观测和理论之间缺少定量的分析和比较。我们曾基于4个极其难得的耀斑观测资料,建立了耀斑爆发与暗条电流强度、能量变化之间的定量关系,从观测和理论两个方面加强了耀斑-暗条电流模型的地位。 1981年5月13日大双带耀斑是21周太阳峰年期间著名的耀斑之一,它具有丰富的观测  相似文献   

20.
秉含着不同时间尺度的太阳电磁辐射变化无疑会调制电离层. 作为电离层物理的核心 问题之一, 电离层对太阳活动性的依存关系是认知电离层结构与演变的基础. 本文简要地综 述最近一些年在电离层的太阳活动性依赖特性方面取得的进展, 涉及的内容包括: (1) 在太阳 辐射的观测与太阳活动指数方面, 以电离层研究的视角评述了太阳活动指数存在的问题, 统 计证实了太阳活动指数与EUV 辐射通量间的非线性关系, 以及改进太阳活动指数的一些努 力; (2) 阐述了在不同高度电离层的太阳活动性依赖性的工作进展, 特别是最近的统计研究发 现, 随着太阳EUV 辐射通量变化, 电离层电子密度变化趋势与所在纬度、季节、地方时和高 度有关, 可区分为准线性、放大和饱和3 种类型, 取决于不同的主控物理过程; (3) 太阳活动 历史序列和23/24 太阳活动周极低展示出太阳活动性存在极端现象, 讨论了太阳辐射极端条 件下的电离层状态; (4) 在电离层的耀斑响应方面, 对全球观测数据的分析研究揭示出耀斑期 间电离层响应与一些太阳参数的统计关系, 特别是修正了以往关于电离层响应与天顶角无关 的错误论断. 利用电离层模式成功模拟了耀斑期间电离层响应的季节、地方时变化和高度差 异等的观测特征. 以上相关工作有助于理解电离层的基本过程, 并为电离层建模、预报和相 关工程应用提供指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号