首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The establishment of the main body axis and the determination of left-right asymmetry are fundamental aspects of vertebrate embryonic development. A link between these processes has been revealed by the frequent finding of midline defects in humans with left-right anomalies. This association is also seen in a number of mutations in mouse and zebrafish, and in experimentally manipulated Xenopus embryos. However, the severity of laterality defects accompanying abnormal midline development varies, and the molecular basis for this variation is unknown. Here we show that mouse embryos lacking the early-response gene SIL have axial midline defects, a block in midline Sonic hedgehog (Shh) signalling and randomized cardiac looping. Comparison with Shh mutant embryos, which have axial defects but normal cardiac looping, indicates that the consequences of abnormal midline development for left-right patterning depend on the time of onset, duration and severity of disruption of the normal asymmetric patterns of expression of nodal, lefty-2 and Pitx2.  相似文献   

2.
3.
Vermot J  Pourquié O 《Nature》2005,435(7039):215-220
A striking feature of the body plan of a majority of animals is bilateral symmetry. Almost nothing is known about the mechanisms controlling the symmetrical arrangement of the left and right body sides during development. Here we report that blocking the production of retinoic acid (RA) in chicken embryos leads to a desynchronization of somite formation between the two embryonic sides, demonstrated by a shortened left segmented region. This defect is linked to a loss of coordination of the segmentation clock oscillations. The lateralization of this defect led us to investigate the relation between somitogenesis and the left-right asymmetry machinery in RA-deficient embryos. Reversal of the situs in chick or mouse embryos lacking RA results in a reversal of the somitogenesis laterality defect. Our data indicate that RA is important in buffering the lateralizing influence of the left-right machinery, thus permitting synchronization of the development of the two embryonic sides.  相似文献   

4.
Spéder P  Adám G  Noselli S 《Nature》2006,440(7085):803-807
Breaking left-right symmetry in Bilateria embryos is a major event in body plan organization that leads to polarized adult morphology, directional organ looping, and heart and brain function. However, the molecular nature of the determinant(s) responsible for the invariant orientation of the left-right axis (situs choice) remains largely unknown. Mutations producing a complete reversal of left-right asymmetry (situs inversus) are instrumental for identifying mechanisms controlling handedness, yet only one such mutation has been found in mice (inversin) and snails. Here we identify the conserved type ID unconventional myosin 31DF gene (Myo31DF) as a unique situs inversus locus in Drosophila. Myo31DF mutations reverse the dextral looping of genitalia, a prominent left-right marker in adult flies. Genetic mosaic analysis pinpoints the A8 segment of the genital disc as a left-right organizer and reveals an anterior-posterior compartmentalization of Myo31DF function that directs dextral development and represses a sinistral default state. As expected of a determinant, Myo31DF has a trigger-like function and is expressed symmetrically in the organizer, and its symmetrical overexpression does not impair left-right asymmetry. Thus Myo31DF is a dextral gene with actin-based motor activity controlling situs choice. Like mouse inversin, Myo31DF interacts and colocalizes with beta-catenin, suggesting that situs inversus genes can direct left-right development through the adherens junction.  相似文献   

5.
Yamamoto Y  Stock DW  Jeffery WR 《Nature》2004,431(7010):844-847
Hedgehog (Hh) proteins are responsible for critical signalling events during development but their evolutionary roles remain to be determined. Here we show that hh gene expression at the embryonic midline controls eye degeneration in blind cavefish. We use the teleost Astyanax mexicanus, a single species with an eyed surface-dwelling form (surface fish) and many blind cave forms (cavefish), to study the evolution of eye degeneration. Small eye primordia are formed during cavefish embryogenesis, which later arrest in development, degenerate and sink into the orbits. Eye degeneration is caused by apoptosis of the embryonic lens, and transplanting a surface fish embryonic lens into a cavefish optic cup can restore a complete eye. Here we show that sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh) gene expression is expanded along the anterior embryonic midline in several different cavefish populations. The expansion of hh signalling results in hyperactivation of downstream genes, lens apoptosis and arrested eye growth and development. These features can be mimicked in surface fish by twhh and/or shh overexpression, supporting the role of hh signalling in the evolution of cavefish eye regression.  相似文献   

6.
WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.  相似文献   

7.
Although the somatic cell nuclear transfer(SCNT) technique has been used extensively for cloning and generating transgenic pigs,the cloning efficiency is still very low.It has been proposed that the low efficiency of this technique is the result of incomplete epigenetic reprogramming and abnormal gene expression during early embryonic development.In this study,we investigate the effect of Scriptaid,a low-toxicity histone deacetylase inhibitor,on the developmental competence of porcine SCNT embryos.We found that treating SCNT embryos with 500 nmol/L Scriptaid for 15 h after activation significantly enhanced the blastocyst formation rate(27.7%) compared with the untreated group(control)(12.2%,P<0.05).Using an immunofluorescence technique to measure the average fluorescence intensity,we also found that treating SCNT embryos with Scriptaid increased the level of histone acetylation on histone H3 at lysine 14(acH3K14).Furthermore,treating embryos with Scriptaid increased the expression level of three genes that play important roles during embryonic development(Oct4,Klf4 at the blastocyst stage and Nanog at the 4-cell stage).Moreover,the expression level of the apoptosis-related gene Caspase-3 was significantly lower in the Scriptaid-treated SCNT embryos compared with the control SCNT embryos at the 4-cell and blastocyst stages.In conclusion,these results indicate that Scriptaid treatment improves the development and nuclear reprogramming of porcine SCNT embryos.  相似文献   

8.
9.
10.
Interaction between nucleus and cytoplasm has been focused in the field of animal embryonic development, in which study of maternal factors is required positively. β-Catenin, an important maternal factor in early embryogenesis, has been analyzed in its expression pattern and functions in this paper. We have cloned goldfish β-Catenin cDNA gene and compared it with zebrafish β-Catenin cDNA. High homology was found in cDNA and in amino acid sequences between them, 93% (2227/2384 bp) and 98.5% (768/780 aa) respectively. The expression pattern of β-Catenin by in situ hybridization and the roles of β-Catenin on embryonic development by co-injection of anti-sense RNA and reporter gene, EGFP have been investigated in the whole process of goldfish embryonic development. The results suggest that β-Catenin presents dynamic distribution, mainly locates at body axis, dorsal tissues, head and tail structures after being fertilized. The loss of β-Catenin activity would cause serious destruction of embryo in dorsal tissues and in anteroposterior axes, and leads embryos to die before larva get hatched.  相似文献   

11.
W B Wood 《Nature》1991,349(6309):536-538
Many animals with overall bilateral symmetry also exhibit some left-right asymmetries with generally invariant handedness. Therefore, the left-right embryonic axis must have a consistent polarity, whose origins and subsequent effects on development are not understood. Caenorhabditis elegans exhibits such left-right asymmetries at all developmental stages. The embryonic cell lineage is asymmetric as well: although the animal is generally bilaterally symmetric, many of its contralaterally analogous cells arise from different lineages on the two sides of the embryo. I accomplished reversal of embryonic handedness by micromanipulation at the 6-cell stage, which resulted in mirror-image but otherwise normal development into healthy, fertile animals with all the usual left-right asymmetries reversed. This result demonstrates that in the 6-cell embryo the pair of anterior (AB) blastomeres on the right is equivalent to the pair on the left, and that the extensive differences in fates between lineally homologous derivatives of these cells on the two sides of the animal must be dictated by cell interactions, most of which are likely to occur early in embryogenesis.  相似文献   

12.
13.
在胎儿发育过程中人MK基因的组织差异性表达   总被引:1,自引:0,他引:1  
MK是肝素结合因子家族中的一个成员,用RT-PCR研究了第11-16周胎儿龄的胎儿的神经组织与非神经组织中MK基因的组织差异性表达,随着胎儿龄的增加,在神经组织中,MK呈现出规律性的从无互有和从低表达到高表达的趋势,提示它可能在胎儿脑的发育中起着重要的作用,在其他非神经组织中,尽管各组织中MK的表达呈现不同的规律,但看起来总的趋势是趋向活跃。  相似文献   

14.
15.
Pandur P  Läsche M  Eisenberg LM  Kühl M 《Nature》2002,418(6898):636-641
Formation of the vertebrate heart requires a complex interplay of several temporally regulated signalling cascades. In Xenopus laevis, cardiac specification occurs during gastrulation and requires signals from the dorsal lip and underlying endoderm. Among known Xenopus Wnt genes, only Wnt-11 shows a spatiotemporal pattern of expression that correlates with cardiac specification, which indicates that Wnt-11 may be involved in heart development. Here we show, through loss- and gain-of-function experiments, that XWnt-11 is required for heart formation in Xenopus embryos and is sufficient to induce a contractile phenotype in embryonic explants. Treating the mouse embryonic carcinoma stem cell line P19 with murine Wnt-11 conditioned medium triggers cardiogenesis, which indicates that the function of Wnt-11 in heart development has been conserved in higher vertebrates. XWnt-11 mediates this effect by non-canonical Wnt signalling, which is independent of beta-catenin and involves protein kinase C and Jun amino-terminal kinase. Our results indicate that the cardiac developmental program requires non-canonical Wnt signal transduction.  相似文献   

16.
17.
The androgenetic embyronic stem (aES) cells are useful models in studying the effects of imprinted genes on pluripotency maintaining and embryo development. The expression patterns of imprinted genes are significantly different between uniparental derived aES cells and zygote-derived embryonic stem (ES) cells, therefore, the imprinting related cell pluripotency needs further exploitation. Several approaches have been applied in generation of androgenetic embryos and derivation of aES cell lines. Here, we describe a method to generate androgenetic embryos by injecting two mature sperms into one enucleated oocyte. Then these androgenetic embryos were treated with a histone deacetylase inhibitor: m-carboxycinnamic acid bishydroxamide (CBHA). Further, aES cell lines were successfully derived from these treated androgenetic embryos at blastocyst stage. The CBHA could improve not only the quality of androgenetic embryos, but also the efficiencies of aES (CaES) cells derivation and chimeric mice generation. The imprinted gene expression pattern in the CBHA treated embryo-derived aES (CaES) cells was also highly similar to that of zygote-derived ES cells.  相似文献   

18.
The retinoblastoma (Rb) gene was the first tumour suppressor identified. Inactivation of Rb in mice results in unscheduled cell proliferation, apoptosis and widespread developmental defects, leading to embryonic death by day 14.5 (refs 2-4). However, the actual cause of the embryonic lethality has not been fully investigated. Here we show that loss of Rb leads to excessive proliferation of trophoblast cells and a severe disruption of the normal labyrinth architecture in the placenta. This is accompanied by a decrease in vascularization and a reduction in placental transport function. We used two complementary techniques-tetraploid aggregation and conditional knockout strategies-to demonstrate that Rb-deficient embryos supplied with a wild-type placenta can be carried to term, but die soon after birth. Most of the neurological and erythroid abnormalities thought to be responsible for the embryonic lethality of Rb-null animals were virtually absent in rescued Rb-null pups. These findings identify and define a key function of Rb in extra-embryonic cell lineages that is required for embryonic development and viability, and provide a mechanism for the cell autonomous versus non-cell autonomous roles of Rb in development.  相似文献   

19.
Mouse embryos with duplications of whole maternal (parthenogenetic and gynogenetic) or paternal (androgenetic) genomes show reciprocal phenotypes and do not develop to term. Genetic complementation has identified the distal region of chromosome 7 (Chr 7) as one of the regions for which both a maternal and paternal chromosome copy are essential for normal development, presumably because of the presence of imprinted genes whose expression is dependent on their parental origin. Embryos with the maternal duplication and paternal deficiency of distal Chr 7 are growth retarded and die around day 16 of gestation; the reciprocal paternal duplication embryos die at an unidentified earlier stage. We report here the incorporation of cells with the paternal duplication into chimaeras, resulting in a striking growth enhancement of the embryos. One gene located on mouse distal Chr 7 (ref. 5) is the insulin-like growth factor 2 (Igf2) gene, an embryonic mitogen. In embryos with the maternal duplication of distal Chr 7, the two maternal alleles of the Igf2 gene are repressed. The presence of two paternal alleles of this gene in many cells is probably responsible for the growth enhancement observed in chimaeras. We propose that there are other imprinted genes in this Chr 7 region. We also compare the imprinting of this subgenomic region with phenotypes resulting from the duplication of the whole parental genome in parthenogenones and androgenones.  相似文献   

20.
The pattern of blood flow in the developing heart has long been proposed to play a significant role in cardiac morphogenesis. In response to flow-induced forces, cultured cardiac endothelial cells rearrange their cytoskeletal structure and change their gene expression profiles. To link such in vitro data to the intact heart, we performed quantitative in vivo analyses of intracardiac flow forces in zebrafish embryos. Using in vivo imaging, here we show the presence of high-shear, vortical flow at two key stages in the developing heart, and predict flow-induced forces much greater than might have been expected for micro-scale structures at low Reynolds numbers. To test the relevance of these shear forces in vivo, flow was occluded at either the cardiac inflow or outflow tracts, resulting in hearts with an abnormal third chamber, diminished looping and impaired valve formation. The similarity of these defects to those observed in some congenital heart diseases argues for the importance of intracardiac haemodynamics as a key epigenetic factor in embryonic cardiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号