首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
伽利略用望远镜收集到大量天体观测数据.他凭借自己的智慧,在浩如烟海的数据中发现模式,创造出关于运动和力学的理论,为现代科学铺平道路. 深智(DeepMind)公司利用人工智能(AI),给予了数学家们一台新的"望远镜".  相似文献   

2.
<正>也许,相比于让女性实现逆生长,让行星重现青春更简单。2003年8月,美国宇航局将一台红外望远镜——斯皮策太空望远镜(Spitzer Space Telescope)发射升空。这是人类送入太空最大的红外望远镜,也是大型轨道天文台计划的最后一台空间望远镜。它的主要任务就是搜索日外行星,为人类寻找第二个家园。斯皮策太空望远镜的红外探测灵敏度极高,能将波长在3~180微米之间的红外辐射尽收眼底。它的红外之眼能够穿透宇宙中的各类尘埃,直击黑暗背后隐藏的无限奥秘。  相似文献   

3.
凡天体都向外发射电磁波。波长从短到长依次为y射线、x射线、紫外线、可见光、红外线和射电波(即无线电波)。天体的状态不同,发射不同的电磁波。在古代,人们只能用肉眼观察星星。17世纪初发明可见光望远镜后,给宇宙探测带来了一次飞跃。肉眼只能看到约4500颗星星,小型望远镜则可看到200万颗,而现代望远镜能分辨几十亿个光点。20世纪30年代射电望远镜诞生后,开辟了探测宇宙的射电窗口,带来了又一次飞跃。航天技术则可把望远镜送入太空,避开地球大气层的影响,使可见光望远镜的观测范围扩大近400倍.分辨力提高1…  相似文献   

4.
广角镜     
哈勃麦空互通使发涵担通天体多国科学家最近利用美国哈勃太空望远镜拍摄到~个距地球260光年的天体,它比此前已知最远天体还远了将近1倍。目前,天文学界尚未能确定这一天体的性质。专家指出,这一发现对现有解释宇宙的理论提出了挑战。参加“斯隆数字天空探索”计划的研究人员是根据红移规律推断这一天体距离的。红移是指从地球观测到的天体电磁波话线向红端,即向波长较长一端的推移现象。它由天体退行速度产生,天体越远,红移量越大。此前,天文学界观测到天体的最高红移值为668,相当于距地球约14cd光年。此次哈勃太空望远镜拍摄到的…  相似文献   

5.
陨石撞击地球平均百年一次 行星防御专家呼吁:尽快将红外线波长望远镜用于太空监测,红外线望远镜可敏感感知小行星从太阳获得的热量,这类望远镜不仅可以发现一些难以探测到的小行星,还可以更好地预估某颗小行星的大小. 意外出现在俄罗斯乌拉尔山脉上空的一次陨石事件突显了天文学家面临的挑战,地球面临着轨道接近地球太空物体的威胁,其中一些甚至直接从地球轨道穿过.科学家正在研究应对这类太空威胁的办法.  相似文献   

6.
中原 《科学24小时》2006,(11):12-13
1990年4月24日,哈勃太空望远镜由发现号航天飞机发射升空,进入地球轨道。哈勃太空望远镜是目前最大、最精巧的太空望远镜,是为了纪念美国天文学家哈勃(Edwin Hubble)而命名的。天文学家哈勃最重要的成就是l929年发现哈勃定律,该定律证明整个宇宙正在膨胀中,被誉为20世纪最重大的天文成就。哈勃太空望远镜口径2.4米,是有史以来制作最精良的望远镜。其镜面十分平滑,即使把镜面放大到3000公里宽,起伏的程度还不到5厘米。但不幸的是,发射升空两个月后传回来的第一张影像不如预期,这才发现镜面还不够凹,精度差了2微米(是一根头发的五千分之一),…  相似文献   

7.
波长 韦布的主要观测波段为红外,并且拥有4台用来拍摄天体图像及光谱的科学仪器.这些仪器提供的波长覆盖范围为0.6~28微米(1微米等于1×10-6米).而电磁波谱的红外部分处于0.75微米左右到几百微米之间.这意味着韦布的工作范围主要在电磁光谱的红外段,在可见光范围内(特别是在可见光谱的红色和黄色部分)也具有一定的观测能力.  相似文献   

8.
清除太空碎片,是治愈克斯勒尔征候群的唯一有效办法。 居住在美国北卡罗来纳州阿什维尔市的唐纳德·克斯勒尔.是美国宇航局的退休科学家。他经常在自己住宅的后院平台上架起塞菜斯特望远镜观测太空。虽然这台望远镜算不上是最先进的.但却是克斯勒尔最珍爱的物品:1978年,克斯勒尔发表的一篇论文《人造卫星频繁碰撞:碎片带的产生》.使他在宇航界声名鹊起。他是一位天体物理学家,  相似文献   

9.
自然信息     
紫外望远镜一组美国科学家正在研制一种新的望远镜,它将用来研究类星体,这就是紫外望远镜。类星体在宇宙中也许是活动能力最强、最神秘的天体,它所辐射的紫外能量要比一般星系多得多。这台望远镜将通过研究类星体辐射的紫外光来收集有关类星体的详情。由于科学家对有关类星体的详  相似文献   

10.
美国从1990年代初起,在十余年时间内先后发射了4台工作波段不同的大型太空望远镜,这就哈勃太空望远镜(HST)、康普顿太空望远镜(CGRO)、钱德拉太空望远镜(CXO)和斯皮策太空望远镜(SST),有国人昵称之为"四大天王"。  相似文献   

11.
科技短讯     
“虚拟”射电望远镜 天文学家正在“建造”大小可与地球相比拟的“虚拟”射电望远镜,借助于这种望远镜可以发现宇宙中此哈勃望远镜能看见的天体小1/3000的天体。这种望远镜之所以称作虚拟望远望,是因为它能将分布在几大洲上的几台射电望远镜的信号组合在一起,其中包括建造在美国本土上的2台射电望远境以及建  相似文献   

12.
正短短100年间,电子学领域的发明几乎影响到人类活动的一切方面。如果地球上的电子在一瞬间突然不辞而别,今天的人类真不知如何是好。电子技术领域的发明,拓展了人类获取自然信息的空间尺度。20世纪30年代,科学家开始突破光学显微镜的局限,深入更小的微观世界观察病毒和原子;开始通过电磁波获取光学望远镜无法得到的太空天体信息。1931年,德国科学家卢斯卡(1906-1988)发明了电子显微镜,利用电  相似文献   

13.
<正>人世间是否有幽灵?没人知道答案。但是,在宇宙中却存在着一种被称为"宇宙幽灵"的奇特气态天体。1999年7月23日,钱德拉太空望远镜成功升空,作为人类的"眼睛"观测着宇宙空间。作为一类特殊天体,黑洞一直是钱德拉太空望远镜的重要观测目标,但在一个遥远且超大质量黑洞周围,科学家却发现了一个奇特的"天文奇景"——"宇宙幽灵"。  相似文献   

14.
地心之旅     
通过哈勃太空望远镜,人类最远已经能够看到距离地球140亿光年的天体,人类发射的各种太空探测器已经成功造访了太阳系的七大行星,人类的足迹甚至已经印在了月球上。然而,我们对自己脚下的地球却知之甚少。  相似文献   

15.
Covau.  C 林志信 《世界科学》1996,(9):33-34,10
欧洲发射红外线天文台CraigCovauir著林志信译欧洲空间局新的红外线空间天文台──“欧洲哈勃望远镜”──专门用来揭示“隐藏的宇宙”。欧洲空间局红外线空间天文台(ISO)定于11月中旬发射,期望它揭示组成“隐藏的宇宙”的成千上万种天体──这个宇宙...  相似文献   

16.
正一个国际天文学家团队通过把哈勃(Hubble)和盖亚(Gaia)太空望远镜的观测数据结合起来,对银河系质量进行了迄今为止最精确的估算。从恒星、行星和小行星,到黑洞和不可见的暗物质,我们的银河系充满了很多物质。但是,天文学家对银河系所有这些天体物质的总质量,还没有达成共识。过去,科学家对银河系质量的估算值,小到5 000亿太阳质量,大到2万~3万亿太阳质量(1太阳质量等于我们的太阳的质量)。这中间的巨大不确定性与天文学家对我们银河系  相似文献   

17.
红外线是介于可见光红端与微波之间的电磁辐射,其波长范围从0.75微米至1000微米,为人眼不可见光线部分。自从1800年英国天文学家威·赫谢耳(W.Herschel)在研究太阳光谱的热效应时发现以来,它在信息技术与通讯、保健与生命科学、国防与太空、科研与教育等领域中发挥出越来越重要的作用。根据红外辐射在地球大气层中传输特性的不同,可分为近红外(波长范围0.75~3微米)、中红外(波长范围3~6微米)、远红外(波长范围6~15微米)、极远红外(波长范围15~1000微米)四个波段。I.近红外波段近红外波段在通讯、药物检测、资源探测等领域存在大量应用…  相似文献   

18.
随着科学技术的不断发展,制作天文望远镜的技术也在不断发展,各种类型的望远镜层出不穷。天文望远镜的不同,主要在于物镜的选择、副镜的安装配制等方面的不同。 物镜是望远镜对着天体的那块镜片,它可以是透镜,也可以是反射镜。物镜是天文望远镜光学部分的主件,它的作用是:①将遥远的天体在近处成像,便于观测研究;②大量收集天体发出的光。 天文望远镜的目镜也有两个作用:①放大天体所张的角距,以利于观察某些天体(如行星、月球、卫星、  相似文献   

19.
李晓 《世界科学》2001,(5):29-29
在过去的半个世纪内 ,世界上功能最强的地基天文望远镜曾一度是加利福尼亚州帕洛马山的海尔望远镜的专利称号 ,但和哈勃空间望远镜相比 ,海尔望远镜还是相形见拙。海尔望远镜的 5米反射镜可以观测到数十亿光年之遥的天体 ,哈勃的口径虽然只有 2 4米 ,但却能观测到 1 4 0亿光年之遥的天体。 5米反射镜只能看到暗至 2 3等的星星 ,相当于看到 3公里的烛光亮度 ;而哈勃却能观测到暗至 2 9等的暗弱天体 ,相当于看到50 0公里之外的烛光。更为重要的是 ,哈勃提供的图像比地面观测到的清晰 1 0倍以上。然而在过去的几年中 ,科技的进步使得新颖的地…  相似文献   

20.
欧洲太空总署去年12月发射了世界上最强大的x射线太空望远镜,用来探测宇宙深处的星体,以期找出发射X射线的超新星爆炸和黑洞的最新资料由于X射线不能穿过地球的大气层,因此科学家要把X射线望远镜发射到太空.才可以清楚地观察到从远处星体发出的X射线一目前.世界卜最强大的X射线里远镜是美同太空总署的ChandraX射线望远镜;不过,欧洲太空总署计划发射的x射线太空望远镜,将会比ChandraX射线望远镜强大很多信这个被称为“X射线多镜任务(简称XMM)”的X射线太空望远镜拥有了组镜子,由于每张镜子的厚度均小于1毫米,科学家叶以将…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号