首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于傅立叶核与径向基核的支持向量机性能之比较   总被引:5,自引:0,他引:5  
支持向量机(SVMs)是由Vapnik提出的一种建立在统计学习理论上的新方法:这种方法被深入地研究并广泛应用在诸如分类和回归问题上。由于其基于结构风险最小化的机理,因此相对于其他的经典方法有着更好的泛化特性,其中核函数的选择对支持向量机的性能有着很大的影响。深入地研究了基于傅立叶核函数的支持向量机的特性,得出在某些特殊的情况下,基于傅立叶核函数的支持向量机的性能要好于基于RBF核的支持向量机。最后的仿真对其进行了比较验证。  相似文献   

2.
基于傅立叶核与径向基核的支持向量机性能之比较   总被引:2,自引:0,他引:2  
支持向量机(SVMs)是由Vapnik提出的一种建立在统计学习理论上的新方法。这种方法被深入地研究并广泛应用在诸如分类和回归问题上。由于其基于结构风险最小化的机理,因此相对于其他的经典方法有着更好的泛化特性,其中核函数的选择对支持向量机的性能有着很大的影响。深入地研究了基于傅立叶核函数的支持向量机的特性,得出在某些特殊的情况下,基于傅立叶核函数的支持向量机的性能要好于基于RBF核的支持向量机。最后的仿真对其进行了比较验证。   相似文献   

3.
基于支持向量机的短期负荷预测   总被引:1,自引:0,他引:1  
讨论了现有的支持向量机回归参数选取方法.针对负荷预测建模,采用交叉验证的方法对参数进行选取,得到的最优参数对未来的峰荷进行预测,仿真结果表明了该方法的有效性.  相似文献   

4.
支持向量机可以引入特征变换将原空间的非线性问题转化为新空间的线性问题。本文在论述支持向量机模型创建的基础上,着重对核函数的选取及参数的确定进行了研究,通过实验数据表明,文中创建的组合核函数,在人体下肢动作模式识别中,有较高的识别率。  相似文献   

5.
基于支持向量机的乳腺癌辅助诊断   总被引:4,自引:0,他引:4  
采用支持向量机、K-近邻法(K-Nearest Neighbor,K-NN)、概率神经网络(Probabilistic Neural Network,PNN),结合乳腺肿瘤的细针穿刺细胞病理学临床数据诊断乳腺癌.结果表明:当使用sigmoid核函数时,SVM通过5次交叉验证的最佳平均分类准确率达到了96.24%,优于K-NN(95.37%),PNN(95.09%)等分类器,表明该方法有望成为一种实用的乳腺癌临床辅助诊断工具.  相似文献   

6.
 讨论了通过对支持向量的局部扰动来确定支持向量集中的强影响点,并由这些强影响点构造相同精度下具有更强广义能力的支持向量机;对线性核函数和高斯径向基函数所构建的SVM进行了分析,并给出一个实例.  相似文献   

7.
本文给出了应用支持向量机回归和径向基函数网络求解不规则边界边值问题的算法.两种方法协同使用不包含可调参数的支持向量机回归作为基本的逼近元,它部分影响边界条件;径向基函数网络用来精确的满足边界条件.我们用这种方法求解了一个二维的偏微分方程边值问题并且得到了较好的逼近解.  相似文献   

8.
核函数支持向量机的研究进展   总被引:2,自引:0,他引:2  
核函数支持向量机是机器学习的最新尖端技术,并且成功应用于许多领域。本文叙述了核函数支持向量机的基本理论,并介绍了相关的基础研究和应用研究,同时探讨了未来的发展趋势。  相似文献   

9.
人脸识别身份验证技术是目前一个非常活跃的研究课题.文章针对人脸识别系统涉及到的人脸特征提取、识别验证等环节,利用K-L变换首先对人脸图像进行特征参数提取,并提出用支持向量机与遗传算法相结合的新型算法进行分类识别,利用遗传算法自动选择最优的核函数参数,将以上方法相结合的新型人脸识别方法的实验结果表明,该方法所得参数确定的SVM具有较优的识别率,其整体性能优良.  相似文献   

10.
在模糊基函数为高斯型隶属函数或更一般地其满足Mercer条件和核函数为有界函数的情况下,证明了支持向量机器问题与一般的模糊规则模型的等价性.这一结论在许多实际复杂的无法事先确定其模糊规则的数量的情况下十分重要.并且给出了当在知道模糊模型时分别确定C和ε值的算法.最后用两个例子说明二者的等价性.  相似文献   

11.
Artificial Neural Networks (ANNs) such as radial basis function neural networks (RBFNNs) have been successfuUy used in soft sensor modeling. However, the generalization ability of conventional ANNs is not very well. For this reason, we present a novel soft sensor modeling approach based on Support Vector Machines (SVMs). Since standard SVMs have the limitation of speed and size in training large data set, we hereby propose Least Squares Support Vector Machines (IS_ SVMs) and apply it to soft sensor modeling. Systematic analysis is performed and the result indicates that the proposed method provides satisfactory performance with excellent approximation and generalization property. Monte Carlo simulations show that our soft sensor modeling approach achieves performance superior to the conventional method based on RBFNNs.  相似文献   

12.
提出一种基于模糊多类SVM(FSVMs)的图像检索相关反馈算法.首先,将图像检索的相关反馈过程看成是一个正样本类和多个负样本类之间的多分类问题,改善了反馈固有的正负样本不对称问题;其次,将受限随机选择(CRS)扩展为多类受限随机选择(MCRS)来扩充多类负样本,解决小样本问题;并以记忆性标注的方式降低用户多类标注的疲劳和误差.实验结果表明,该方法能在较少的反馈次数内得到较满意的检索结果.  相似文献   

13.
支持向量机是一种基于统计学习理论的新颖的机器学习方法,由于其出色的学习性能。该技术已成为当前国际机器学习界的研究热点.这种方法已广泛用于解决分类和回归问题.在回归中。目前的研究和应用都限于单输出的情况,而实际中有很多属于多输出回归问题.针对这一点,将支持向量回归算法推广到多输出情况.仿真实例说明了该算法的可行性.  相似文献   

14.
提出了一种基于DCT提取人脸特征技术和支持向量机分类模型的人脸识别方法。利用离散余弦变换可提取人脸可识别的大部分信息,而支持向量机作为分类器,在处理小样本、高维数等方面具有独特的优势,且泛化能力很强,无需先验知识。从ORT人脸库上的实验结果可以看出,DCT特征提取是很有效的,且SVM的分类性能优于最近邻分类器,同时提高了整个系统的运算速度。  相似文献   

15.
支持向量机Mercer核的若干性质   总被引:2,自引:0,他引:2  
目前支持向量机在模式分类中得到了很好的应用.对于线性不可分的样本空间,需要寻找核函数,将线性不可分的样本集映射到另一个高维线性空间.在理论上,怎样选择核函数,还是一个未解决的问题.因此研究支持向量机的核函数性质,对于寻找核函数有重要意义.为此,在研究支持向量机的基础上,给出了核函数的若干重要性质.  相似文献   

16.
提出了一种基于支持向量机的W indow s主机入侵检测方法。讨论了以W indow s注册表作为数据源的入侵检测系统的结构及特征向量的提取方法。给出了基于支持向量机的入侵分类算法,通过建立支持向量描述模型进行预测。实验表明:该方法对已知样本有很高的检测率,对未知样本也有一定检测能力。  相似文献   

17.
基于SVM的分类方法综述   总被引:2,自引:0,他引:2  
本文介绍了文本分类的起源,常用的几类文本分类方法及基于SVM(Support Vector Machines)文本分类的基本原理和方法。并在分析文本分类的特点的基础上比较了在文本分类中应用SVM的优势及存在的问题。最后总结出了SVM在文本分类中应用的两个主要研究方向。  相似文献   

18.
一种快速支持向量机分类算法   总被引:2,自引:0,他引:2  
提出了一种提高分类速度的快速支持向量机分类算法,利用核函数矩阵的行向量集中的极大线性无关向量组采用变换的方式,用少量的支持向量代替全部支持向量进行分类计算,在保证分类精度的前提下使得分类速度有较大提高.  相似文献   

19.
波达方向(DOA) 估计是智能天线系统中的一个关键技术之一。在本文中,通过一种基于支持向量机(SVM)的回归技术对信号的波达方向进行估计,这种方法经过训练以后,可以识别在训练样本里的和未知的信号的到达方向。仿真结果可以证明这种方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号