首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以过硫酸盐预处理活性炭再用化学沉淀法联合超声技术制备出的磁性活性炭,具有比表面积高、官能团丰富、磁性能好等优点,其磁性活性炭比表面积为646.81 m2/g,孔径为2.11 nm,孔容为0.327 m2/g. 官能团主要为羟基、羧基和酯基等. 饱和磁化强度为10.07 emu/g,有利于吸附后的分离,剩余磁化强度为1.165 emu/g,具有一定的抗退磁能力. 采用静态吸附实验的方法,比较了活性炭和制备的磁性活性炭在水溶液中对铅的吸附量,结果表明磁性活性炭对铅的饱和吸附量为68.925 mg/L,远超过活性炭对铅的吸附量30.125 mg/L,显示出磁性活性炭对水溶液中铅优异的吸附性能.  相似文献   

2.
在测定4种颗粒状活性炭常规性能指标(比表面积、亚甲基兰值、碘值、苯酚值)的基础上,测定了4种活性炭对水中微量内分泌干扰物邻苯二甲酸二丁酯(DBP)的吸附等温线以及吸附效果,同时对活性炭的电化学再生进行了研究.结果表明:35℃时,4种活性炭均能有效地去除DBP,去除率高达90%以上;煤质1.0、煤质1.5、果壳和椰壳饱和吸附量分别为52.52 mg/g、29.90 mg/g、159.3 mg/g和147.2 mg/g.根据Langmuir和Freundlich吸附模型对DBP吸附等温线进行拟合,更符合Freundlich模型.活性炭对DBP吸附量的大小与其比表面积、亚甲基兰吸附量、碘值、苯酚值存在一定的关系,为选择合适的活性炭来处理水中微量邻苯二甲酸类化合物提供参考依据.  相似文献   

3.
4种活性炭吸附典型内分泌干扰物DBP的特性   总被引:1,自引:0,他引:1  
在测定4种颗粒状活性炭常规性能指标(比表面积、亚甲基兰值、碘值、苯酚值)的基础上,测定了4种活性炭对水中微量内分泌干扰物邻苯二甲酸二丁酯(DBP)的吸附等温线以及吸附效果,同时对活性炭的电化学再生进行了研究.结果表明:35 ℃时,4种活性炭均能有效地去除DBP,去除率高达90%以上;煤质1.0、煤质1.5、果壳和椰壳饱和吸附量分别为52.52、29.90、159.3、147.2 mg/g.根据Langmuir和Freundlich吸附模型对DBP吸附等温线进行拟合,更符合Freundlich模型.活性炭对DBP吸附量的大小与其比表面积、亚甲基兰吸附量、碘值、苯酚值存在一定的关系,为选择合适的活性炭来处理水中微量邻苯二甲酸类化合物提供参考依据.  相似文献   

4.
采用活性炭吸附预处理后的莠去津农药废水中的有机物,研究了活性炭种类、溶液pH值、盐含量对吸附的影响,测定了吸附等温线,并探讨了活性炭的再生性能.结果发现:pH值小于3时粉状木质活性炭对农药废水的吸附效果最好;废水中的盐含量越高,越有利于吸附;Freundlich模型比Langmuir模型能更好地拟合吸附等温线,pH值为3时的最大吸附量为250 mg/g.碱液可以将吸附在活性炭上的有机物解吸下来,再生后活性炭的吸附量可达到新鲜活性炭的98%以上.  相似文献   

5.
碳纳米管是各方面性能优异的新型纳米材料,其吸附性能优于活性炭.采用化学共沉淀方法制备磁性MWCNTs.利用红外光谱和Zeta电位对磁性MWCNTs和MWCNTs进行表征分析.吸附实验探讨pH值、温度等因素对磁性MWCNTs吸附罗红霉素的影响,采用准一、二级动力学模型和Freundlich、Langmuir等温线方程拟合曲线,分析吸附质可能的吸附机理.结果表明:磁性MWCNTs对罗红霉素最佳吸附pH值为1,罗红霉素的最大吸附量为39.6 mg/g.用准一、二级动力学模型和Langmuir等温线方程能较好地拟合罗红霉素吸附过程,相关系数均在0.95以上.标准吸附焓变△Ho为9.284 kJ/mol,吸附自由能变△G在-60.812 ~-58.640 kJ/mol之间,△S>0,吸附是自发的吸热过程.  相似文献   

6.
采用中药材废渣基活性炭处理含Cr(VI)废水,考察了pH、离子浓度、活性炭投加量、吸附时间对其吸附性能的影响,并对其吸附过程进行初步研究。结果表明,在pH=2、离子浓度80mg/L、活性炭投加量0.1g以及吸附时间为1h下吸附性能最佳。活性炭对Cr(VI)的吸附等温线符合Freundlich模型,采用准二级动力学模型能更好的描述活性炭对Cr(VI)吸附动力学过程。  相似文献   

7.
染色废水对环境具有巨大危害。利用青霉素菌渣为原料制备氮掺杂活性炭,研究其对水中亚甲基蓝的吸附机理,并用响应曲面法优化活性炭对水中亚甲基蓝的吸附机理。研究结果表明,所制备的活性炭孔隙结构发达,比表面积达到了1 640.39 m2/g,活性炭表面含羟基等官能团。亚甲基蓝吸附过程符合伪二级动力学模型和Langmuir等温吸附模型。建立的响应面模型合理可靠,最佳吸附条件为吸附时间138 min、吸附温度30℃、pH为8。在此条件下,活性炭对亚甲基蓝的吸附量达到了332.90 mg/g,与模型理论预测值335.76 mg/g基本吻合。  相似文献   

8.
摘要:邻苯二甲酸酯(Phthalic acid esters,PAEs)具有致突变、致癌和致畸形的特点,严重干扰人类的内分泌系统,特别是生殖系统.邻苯二甲酸二丁酯(Dibutyl phthalate,DBP)是目前最常用的邻苯二甲酸酯类增塑剂之一,具有很大的毒性和积累性,已被中国环境保护部列为优先控制污染物.本文以DBP为研究对象,分别采用活性炭吸附、电解、吸附电解耦合技术对水中DBP的去除进行了研究.结果表明:吸附电解耦合技术具有协同作用能力,果壳活性炭进行吸附电解150min,DBP去除率为62.6%,高于果壳活性炭单独吸附150min的去除率(8.6%)与单独电解150min去除率(36.8%)之和.吸附电解的机理研究表明:活性炭可以强化电解对DBP的氧化作用,同时,电解可对活性炭进行再生,延长活性炭吸附饱和时间,提高活性炭的吸附量,两者表现为互相促进协同作用.  相似文献   

9.
用过硫酸盐预处理活性炭,然后用化学沉淀法联合超声技术制备出磁性活性炭.该磁性活性炭具有比表面积高、官能团丰富和磁性能好等优点,其磁性活性炭比表面积为646.81 m~2/g,孔径为2.11 nm,孔容为0.33 m~2/g;官能团主要为羟基、羧基和酯基等;饱和磁化强度为10.07 emu/g,有利于吸附后的分离;剩余磁化强度为1.165 emu/g,具有一定的抗退磁能力.采用静态吸附实验的方法,比较了活性炭和制备的磁性活性炭在水溶液中对Pb~(2+)的吸附量,结果表明磁性活性炭对Pb~(2+)的饱和吸附量为68.925 mg/g,远超过活性炭对Pb~(2+)的吸附量(30.125 mg/g),显示出磁性活性炭对水溶液中Pb~(2+)优异的吸附性能.  相似文献   

10.
研究活性炭纤维负载Ca(Ⅱ)盐(Ca-ACF)吸附剂的制备及其对Pb(Ⅱ)的吸附性能.文中考察了ACF的比表面积、溶液pH值、吸附剂用量、负载Ca(Ⅱ)盐的种类与浓度等因素对Pb(Ⅱ)吸附性能的影响.结果表明,比表面积为1 500 m2/g的活性炭纤维负载0.25 mol/L CaCl2时,活性炭纤维对Pb(Ⅱ)的吸附效果最好,其对Pb(Ⅱ)的吸附行为符合Langmuir吸附等温模型.当pH值为6、吸附剂加入量为0.2 mg/mL,静态饱和吸附容量达到201.25 mg/g,重复使用时性能稳定,具有处理含Pb(Ⅱ)废水的应用前景.  相似文献   

11.
活性炭自水溶液吸附苯酚的热力学探讨   总被引:3,自引:0,他引:3  
研究了活性炭自水溶液吸附苯酚的吸附规律和机理,对不同吸附温度和溶液pH值下吸附常数和热力学函数进行了估算,结果表明:活性炭自水溶液吸附苯酚符合Langmuir模型;低温度低pH值下苯酚被吸附的量大,熵增效应小,而高温度高pH值下苯酚被吸附的量小,熵增效应大,整个吸附过程中熵增效应随吸附量的增加而减少。  相似文献   

12.
壳聚糖磁性微球对偶氮品红的吸附   总被引:2,自引:0,他引:2  
利用反相悬浮交联法,以Fe3O4为核,制备了壳聚糖磁性微球.将其用于水中偶氮品红的吸附,研究了溶液酸度、吸附时间、偶氮品红初始浓度、温度、离子强度对吸附的影响.结果表明:在40℃,pH 4.0,无盐条件下吸附效果最佳,壳聚糖磁性微球对偶氮品红的饱和吸附量达到357.1 mg/g.运用相关数学模型拟合实验数据得出,该吸附同时符合Freundlich和Langmuir模型(均R2>0.96).经3次重复使用再生后壳聚糖磁性微球对偶氮品红的吸附率仍高于90%.该种新型吸附剂吸附能力强、速度快且易分离和可再生.  相似文献   

13.
以磷酸法活性炭(PAC)为原料,通过不同铁盐溶液浸渍法制备载铁改性活性炭(Fe-PAC),采用二苯碳酰二肼分光光度法检测其对水中Cr(Ⅵ)的吸附效果,考察了铁盐浓度、溶液pH值等因素对吸附效果的影响,研究了吸附平衡时间、吸附动力学,利用XPS、BET等方法对改性活性炭进行表征。结果表明:硫酸亚铁溶液浸渍改性活性炭对Cr(Ⅵ)吸附最佳,硫酸亚铁溶液浓度为0.20mol/L,载铁改性后活性炭对水中Cr(Ⅵ)的吸附量从10.18mg/g提高到22.56mg/g;溶液pH值为2.0时,Cr(Ⅵ)去除率达到95%;通过XPS检测改性后活性炭表面负载有二价铁及三价铁氧化物;吸附动力学实验表明改性活性炭对Cr(Ⅵ)的吸附符合伪二级动力学方程,以化学吸附占主导;采用氮气吸附等温线对其比表面积及孔隙分布分析,结果表明由于铁氧化物堵塞孔隙,改性后活性炭的比表面积减小。  相似文献   

14.
曹昊  唐悦  唐艳萍  田娟 《江西科学》2022,(4):670-673
以椰壳活性炭对氨氮的吸附为研究对象,分别采用不同浓度氢氧化钠溶液对活性炭进行改性,并对改性炭进行表面特征分析,进而选出吸附性能较好的炭,进行等温吸附和吸附动力学的实验研究。研究结果表明:1 mol/L氢氧化钠改性的椰壳活性炭吸附氨氮的效果最好,比表面积最大,为646.039 8 m2/g,微孔体积和吸附平均孔径最小。温度对于改性活性炭吸附氨氮的影响较大,且温度在35℃时活性炭的吸附效果最好,最大吸附量为2.464 9 mg/g;另外,准二级动力学方程能够很好地拟合改性活性炭对氨氮的吸附动力学过程。  相似文献   

15.
朱洪涛 《科技信息》2010,(30):109-110
对Fenton氧化-活性炭吸附组和处理印染废水进行了研究。利用正交实验确定了单独Fenton氧化处理印染废水的最佳条件:Fe2+:0.05g/L;H2O2:40mL·L-1;处理时间40min;pH值3,脱色率为72.1%。考察了活性炭投加量、pH值、处理时间等因素对活性炭吸附效果的影响,结果表明,活性炭吸附处理印染废水的最佳条件:活性炭投加量0.4g·L-1;处理时间40min;pH值2~3,脱色率为69.2%。在Fenton氧化和活性炭吸附的最佳处理条件下进行三种不同组合方式处理印染废水,以二者同时进行处理的方式最佳,脱色率可达90%以上。活性炭对Fenton氧化具有一定的催化作用,二者组合处理印染废水具有较好的脱色效果。  相似文献   

16.
活性炭对挥发酚的吸附特性   总被引:1,自引:0,他引:1  
 利用活性炭对挥发酚进行吸附实验,通过测定挥发酚在水中的浓度变化情况,考查了在不同吸附剂用量、pH值、吸附时间、温度、起始浓度条件下,活性炭对挥发酚去除效果的影响。进而分析活性炭对挥发酚的吸附特性,为含挥发酚废水处理方案的设计提供参数。结果表明,在12℃下,吸附时间20min、活性炭的用量为0.7g/50mL,在不改变水样pH值条件下,挥发酚的去除率最高达96.04%,而且低起始浓度下挥发酚的去除效果明显高于高浓度下的去除效果。活性炭吸附挥发酚的等温线符合Freundlich方程式。  相似文献   

17.
用硝酸对活性炭进行去灰分处理,并用水蒸气进行二次活化,将活性炭制成电极,在电吸附装置中进行电吸附测试。结果表明,二次活化可以提高活性炭的比表面积和孔容,并使得活性炭的单位吸附量从2.92 mg/g提高到4.55 mg/g。活化效果受活化时间和活化温度共同影响,活化1h 的效果最好,提高活化温度有利于提高吸附性能。  相似文献   

18.
真菌生物吸附剂对染料吸附脱色的研究   总被引:3,自引:0,他引:3  
从空气中分离了一株高效脱色真菌,经初步鉴定为青霉属(Peniciliumsp.).研究了该青霉菌菌体对水溶液中阳离子染料孔雀绿的生物吸附作用.试验考察了染料结构、菌体预处理方法和溶液初始pH值对生物吸附作用的影响.结果表明,当孔雀绿染料质量浓度为50 mg/L时,未处理菌体的吸附量为29.3 mg/g,而经过NaHCO3预处理后,效果最佳,达到35.3 mg/g.反应体系中的pH值对菌体吸附剂吸附染料影响很大,当pH值为5时,其吸附能力最大.吸附平衡试验研究表明真菌对孔雀绿的吸附符合Langmuir和Freundlich模型.其最大吸附量可达555.6 mg/g.吸附动力学可用准二级动力学方程...  相似文献   

19.
为提高吸附剂对印染废水中染料的去除率及其循环再生性,用六氯环三磷腈(PNC)和聚乙烯亚胺(PEI)对可生物降解的β-环糊精(β-CD)进行改性,制备两种水不溶性β-CD基纳米吸附剂β-CDN和β-CDN@PEI,并对吸附剂的结构与形态进行表征。用纳米吸附剂对酸性黄AY11染料溶液进行吸附处理,研究染液pH对吸附剂吸附性能的影响,用Langmuir等温吸附模型和拟一级、拟二级吸附动力学模型对吸附过程进行拟合,并与活性炭的吸附性能进行对比。结果表明:纳米吸附剂对AY11染料的去除率随染液pH值的增大而降低,其中β-CDN@PEI对染料的去除率优于β-CDN且在pH<10时保持稳定;β-CDN、β-CDN@PEI和活性碳对AY11染料的吸附过程均符合Langmuir等温吸附模型及拟二级动力学模型;β-CDN、β-CDN@PEI对AY11染料的饱和吸附量分别达1 347.98、2 488.19 mg/g,明显高于相同吸附条件下活性炭的饱和吸附量(876.18 mg/g)。  相似文献   

20.
采用O_3/NaClO协同氧化_吸附法对校园屋面雨水处理进行了试验研究。考察了粉末活性炭投加量、吸附时间、搅拌速度以及初始pH对COD、氨氮、TP和浊度去除率的影响;并进行了吸附等温线及动力学模型拟合。试验结果表明:粉末活性炭的最佳投加量为50 mg/L,最佳吸附时间为60 min,最佳搅拌速度为200 r/min,最佳初始pH为7时COD,氨氮,TP和浊度的去除率分别达到了68.87%,81.90%,78.79%,78.50%。COD和氨氮的吸附等温线更符合Freundilch模型,TP吸附等温线更符合Langmuir模型,拟二级动力学模型能更好的描述粉末活性炭对雨水中COD,氨氮和TP的吸附过程,相关系数均接近于1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号