首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 893 毫秒
1.
 为研究磁感应热疗联合艾迪注射液对人淋巴瘤Daudi细胞的作用,首先进行磁性介质对Daudi细胞生物相容性的研究以及磁性介质升温性能的检测,运用CCK-8法测出不同艾迪药物质量浓度对细胞增殖率的影响选出本实验工作浓度,将对数生长期的人淋巴瘤细胞Daudi分别暴露于磁场、艾迪注射液、磁场与艾迪联合作用下,采用流式细胞技术分析各组实验作用下对细胞凋亡、细胞周期的影响。结果表明:本实验选用的不锈钢空心球具有良好的发热效率以及细胞相容性;本研究选用75 mg/mL作为工作浓度;磁感应热疗作用Daudi细胞后,细胞存活率为(78.48±0.95)%,联合艾迪注射液治疗后,细胞存活率为(9.25±2.05)%(P<0.01);磁感应热疗联合艾迪注射液能够增加细胞凋亡率,而对细胞周期改变不明显。由此可知,磁感应热疗磁性介质应用于淋巴瘤治疗在细胞水平是可行的;磁感应热疗单独使用可以诱导Daudi细胞凋亡,艾迪注射液与其联合应用时能表现出协同抗淋巴瘤细胞作用。  相似文献   

2.
磁感应治疗研究和临床试验   总被引:1,自引:0,他引:1  
 肿瘤磁感应加温治疗是近年来兴起的一项新型肿瘤治疗技术。该技术利用定位导入肿瘤靶区的磁性介质在交变磁场下的磁化损耗产热,对恶性肿瘤实施磁介导加温治疗。研究表明,肿瘤组织在交变磁场诱导的磁热效应下升温至40~70℃时,靶区沉积的热能作用可特异性杀死癌细胞,抑制癌症复发和转移,并可激发机体的抗癌免疫效应,进一步增强治疗效果,是一种简便易行、安全有效的肿瘤治疗方法。磁感应加温治疗在肿瘤治疗的特异性、靶向性等方面显现出其独特优势,已引起了国内外肿瘤临床治疗界的极大兴趣。本文对实验室近年来开展的基于多种磁性介质的肿瘤磁感应热疗研究进行了综述,主要包括磁感应治疗设备研制、热疗用磁性介质研发和磁热疗生物医学实验研究3个方面。在这些研究的基础上,肿瘤磁感应热疗的临床前实验已经完成,目前已经开展一期临床试验研究。  相似文献   

3.
采用共沉淀法制备出Fe3O4磁性纳米粒子,经油酸表面处理后分散在碘化油中,制成Fe3O4/碘化油磁流体.考察了磁流体的磁性能、稳定性以及产热性能,并通过动物实验研究了其体内产热性能和热疗安全性.结果显示,制备的Fe3O4/碘化油磁流体具有超顺磁性和良好的稳定性,在交变磁场中可产生很强的热效应,其SAR值可达到121W/g.此外,该磁流体可在交变磁场中产生足够的热量使肿瘤升温至热疗温度,同时证明其具有良好的靶向性和热安全性.  相似文献   

4.
磁流体联合药物缓释载体介导的肿瘤磁感应热化疗   总被引:1,自引:0,他引:1  
化学共沉淀法制备磁感应热疗用纳米介质——氨基硅烷修饰的磁流体,超声乳化法制备担载多西紫杉醇的聚乳酸-羟基乙酸纳米缓释微球,对二者进行理化表征,并将二者作为磁感应热化疗复合介质进行系统性研究。红外光谱分析磁纳米粒子表面已经成功修饰氨基硅烷,热重分析表明氨基硅烷包封率为2.5%~3%,透射电镜观察磁纳米粒子粒径约为10nm,振动样品磁强计验证磁流体为超顺磁性,体外升温实验表明该纳米颗粒在交变磁场下具有良好的升温能力。扫描电镜观察高分子载药微球具有规则的形态,Zeta电位检测微球表面呈负电性,差示扫描量热仪分析多西紫杉醇在纳米微球内以非晶体形式存在,高效液相分析载药高分子缓释微球具良好的缓释性能,细胞热化疗实验发现磁流体联合载药缓释微球具有良好的热协同效应。研究初步表明,磁流体-高分子载药微球是一种有效的磁感应热化疗复合介质。  相似文献   

5.
肿瘤热疗用锰锌铁氧体纳米粒的制备及表征   总被引:11,自引:1,他引:10  
以硫酸盐为原料, NaOH为沉淀剂制备了一系列MnxZn1-xFe2O4纳米粒(x=0.1,0.3,…,0.9,1.0),对其进行了X-射线衍射分析,证实其为尖晶石型锰锌铁氧体;透射电镜观察其形貌为近似球状;图像分析仪测算其平均粒径为30 nm;并进行了居里温度测定和给定交变磁场下的体外升温、恒温实验,结果显示所制备材料的居里温度随锌含量的增加而降低;在相同介质、相同质量浓度条件下,其相应磁流体体外升温实验所能达到的恒定温度亦随锌含量的增加而降低, 如在磁流体质量浓度为20 g/L时,其恒定时的温度在68~40 ℃之间.实验结果为进一步筛选出适合肿瘤热疗的材料配比及相应的质量浓度提供了理论及实验依据.  相似文献   

6.
 磁感应热疗是一种融合了生物技术、新材料的新型热疗方法,它利用铁磁性物质可在交变磁场下感应升温的物理特性,将毫米级(合金热籽)、微纳米级(磁流体)的铁磁性物质植入到肿瘤组织内进行热疗.磁感应热疗具有靶向性强、升温可控、诊断和治疗同步化等诸多优点,给人类治疗肿瘤带来了新的希望和契机.  相似文献   

7.
 磁性骨水泥是一种能兼顾骨修复和肿瘤热疗的新型磁感应热疗介质.为了获得性能优良的磁性骨水泥,本研究选择7 种微米级金属介质,分别对其形貌、升温能力、磁学性能进行筛选,筛选出性能优良的磁性介质.优选出的磁性介质与磷酸钙骨水泥按照不同比例混合,制备出不同配比的磁性骨水泥.通过测试凝固时间、抗压强度、体外升温等指标,进一步确定了磁性骨水泥的最优配比,为其应用提供了实验依据.  相似文献   

8.
为了得到热疗用交变磁场场强的空间分布,设计并研制了基于DSP的磁场测量装置.该装置由3个部分构成:交变磁场传感器、感应电压信号处理采集模块和线圈传感器的三轴运动导轨.交变磁场传感器由面积很小的单匝线圈构成,相对较大的磁场分布空间,通过小线圈的磁场可近似视为均匀.线圈测得的磁场信号经过前端处理转化为数字信号.通过三轴运动导轨控制传感器的位置可以得到空间各点的磁场强度信号.由于DSP F2812具有良好的运动控制功能以及片载A/D较高采样的频率,可用来控制整个系统.根据磁场强度的分布可以确定热疗中升温效果最好的空间.  相似文献   

9.
肿瘤热疗用Fe3O4磁性纳米粒子的生物相容性研究   总被引:6,自引:0,他引:6  
研究用于肿瘤热疗的自制Fe3O4磁性纳米粒子的生物相容性.采用MTT试验评价其浸提液体外细胞毒性;溶血试验评价其有无溶血作用;小鼠腹腔注射Fe3O4磁性纳米粒子无菌生理盐水混悬液以测定其LD50;微核试验评价其有无致畸、致突变作用等.MTT结果显示该材料对L-929细胞毒性为0~1级,均属对细胞无毒性范畴;溶血试验中Fe3O4磁性纳米粒子的溶血率为0.514%,远小于5%,表明实验用Fe3O4磁性纳米粒子无溶血作用;昆明小鼠腹腔注射该材料混悬液,其LD50为7.57g/kg体重,其95%的可信区间为6.18~9.27g/kg体重,属实际无毒范畴,且具有较广的安全值范围.微核试验结果表明该材料对小鼠骨髓微核形成率与阴性对照组相比无显著差异,而与阳性对照CTX组相比有显著差异,可以认为该材料无致畸或致突变作用.从实验目前的研究结果来看,自制的Fe3O4磁性纳米粒子具有良好的生物相容性,在肿瘤磁流体热疗方面具有良好的应用前景.  相似文献   

10.
 磁感应热疗植入合金热籽与放射籽源在尺度上处于同一水平,当热籽和放射籽源同时植入肿瘤组织,热场和辐射将共同作用于肿瘤细胞,提高肿瘤细胞的杀灭作用.本文应用电磁学理论计算射频磁场中热籽和放射籽源的产热功率.并将不同分布的热籽和放射籽源置于磁感应设备射频磁场中,调节磁场参数,观察不同条件下的温升曲线.同时研究了放射籽源在磁感应射频磁场下的升温情况以验证放射籽源的安全性,以及合金热籽与放射籽源混合排布情况下的升温情况以验证联合治疗的有效性.理论计算和实验结果表明,放射籽源在磁感应治疗射频磁场下(50~500kHz)磁热效应不显著,其用于热放疗的安全性得到验证.将放射籽源与热籽混合植入琼脂体模和离体肌肉组织,在介质植入区域内温度均远超过43℃,可实现植入区域内热疗对放疗的增敏作用.  相似文献   

11.
羰基铁粉形貌对吸波性能的影响   总被引:1,自引:0,他引:1  
由于羰基铁粉具有温度稳定性好、吸收频带宽、可设计性强等优点,从而得到了广泛的研究与应用。对两种参数基本一致,但形貌各异的羰基铁粉(球状和树枝状)进行了电磁吸波性能测试,用以研究形貌对羰基铁粉电磁吸波性能的影响。实验结果表明,形貌对羰基铁粉的电磁吸波性能有非常大的影响。相比于球状羰基铁粉,树枝状羰基铁粉的最大反射损耗增加了94%,达到-47.14dB。同时,对应于最大反射损耗的频率从球状羰基铁粉的11.88GHz移动到树枝状羰基铁粉的6.44GHz。这是因为树枝状形貌有利于形成不连续网络、增加对入射微波的漫反射、还可以带来更多的界面电荷极化,从而增强对电磁波的吸收强度。此外,本研究表明各向异性结构是提高介电常数和介电损耗获得轻质宽带吸波剂的有效途径。  相似文献   

12.
为了研究不同种类磨粒与羰基铁粉的粒径匹配性对加工效果的影响规律,并优化磁感应强度、研磨压力、研磨盘转速和工件转速等工艺参数,采用集群磁流变研磨方法对6H-SiC晶片进行了研磨试验。结果表明:当磨粒与羰基铁粉的粒径比约为1.5时加工效果较好;各工艺参数对6H-SiC加工的材料去除率的影响由大到小依次为磁感应强度、研磨盘转速、研磨压力、工件转速,对表面粗糙度的影响由大到小依次为磁感应强度、研磨压力、工件转速、研磨盘转速;磁感应强度可以改变羰基铁粉的吸附力,从而改变对磨粒的把持程度,成为影响加工效果最显著的因素。优化后的工艺参数组合为:工件转速60r·min-1;研磨盘逆向转速90r·min-1;研磨压力70kPa;磁感应强度0.012T。在此优化条件下能获得最大的材料去除率(0.498μm·min-1)和较低的表面粗糙度(86.3nm)。  相似文献   

13.
为减少化石燃料的使用,开发清洁、低碳、可再生的新型能源,本文对微纳米铁粉燃料开展燃烧实验研究。通过微纳米铁粉的比表面积实验、热重分析实验、X射线衍射实验,得到不同粒径铁粉的比表面积、热重曲线以及X射线衍射图谱。分析粒径对比表面积、热重曲线的影响,研究不同粒径铁粉在40K/min升温速率下的燃烧特性参数和燃烧动力学参数。并用粒子群算法拟合出微纳米铁粉的燃烧速率微分方程,建立微纳米铁粉的燃烧模型。结果表明:除了50nm铁粉以外,随着粒径增大,铁粉的着火点温度、最高燃烧速率温度、燃尽温度、活化能、指前因子均增大。50nm铁粉会在高温下发生熔化并凝结,使得燃尽温度上升,燃尽时间延长,不利于反应正常进行。对于粒径在50nm~2μm范围内的铁粉,可以通过本文建立的铁粉燃烧速率微分方程近似计算不同粒径微纳米铁粉的燃烧特性参数和燃烧动力学参数,误差在允许的范围内。  相似文献   

14.
为了探究硅树脂基质磁流变胶的流变特性,自行制备了羰基铁粉质量分数分别为30%、50%、70%的三种磁流变胶MRG-30、MRG-50、MRG-70,并对其展开稳态旋转剪切测试和动态振荡剪切测试.结果表明:剪切应力随磁场变化分为快速增长、缓慢增长、饱和三个阶段,羰基铁粉含量对零场粘度、剪切应力、响应速率影响较大,MRG-70磁流变效应最好;磁流变胶的流动特性符合Herschel-Bulkley函数变化规律,且非牛顿指数n都满足n1,具有剪切稀化特性;线性粘弹性区域临界应变幅值rLVE随着磁感应强度增强而增大,磁流变胶的储能模量对频率的依赖性微弱;法向应力随着磁感应强度增强而增大,但频率对材料的法向应力的影响十分微弱.  相似文献   

15.
Magnetic fluid hyperthermia (MFH) promises to be a viable alternative in the treatment of localized cancerous tumors.The treatment consists of introducing nanoparticles as energy absorbent agents in tu...  相似文献   

16.
针对深孔零件光整加工技术的难题,提出了基于针式抛光头的磁性复合流体(MCF)深孔抛光的加工方法。首先利用COMSOL Multiphysics有限元软件建立不同的永磁铁磁场组合模型,根据仿真结果设计磁场分布均匀且强度较强的针式抛光头;再建立MCF深孔抛光的磁流场耦合模型,分析MCF的流动特性;以黄铜H62的深孔零件为加工对象,进行磁性复合流体的深孔抛光工艺试验研究。仿真结果与试验结果吻合,结果表明,当针式抛光头采用纵向单列磁芯结构,转速为800 r/min,抛光间隙为3 mm,羟基铁粉粒径为48 μm时,表面粗糙度为0.13 μm,材料去除率为0.025 mg/min,从而获得了最理想的MCF深孔抛光效果。  相似文献   

17.
为提高电磁超声传感器换能效率,对电磁超声横波传感器的线圈背板进行了优化设计。首先通过实验方法研究了线圈背板厚度对超声信号的影响,然后通过有限元仿真软件对采用羰基铁粉作为线圈背板时的磁场分布进行了仿真,最后通过实验比较了线圈背板优化前后横波传感器的信噪比和提离距离。结果表明:电磁超声横波传感器中线圈背板的最佳厚度为1.5~2.0 mm;采用长度和宽度尺寸与线圈工作区域相同的羰基铁粉作为线圈背板能显著增加传感器工作区域的磁场强度;与采用非导磁性材料作为线圈背板相比,采用优化后的羰基铁粉背板可使传感器的信噪比增加约1倍,提离距离增加约1 mm。  相似文献   

18.
Hyperthermia induced by magnetic nanoparticles is a recent therapeutic approach for local targeting of hyperthermia and thermoablation and is a promising treatment of malignant tumors.The purpose of this study is to evaluate the potential and therapeutic effect of magnetic fluid hyperthermia on the rabbit VX2 liver tumor model.Rabbits bearing liver tumors 14 days after tumor implantation were randomly divided into five groups of 10 cases each,including three control groups and two hyperthermia groups.Hyperthermia was carried out immediately after a single intratumoral injection of uncoated water-based Fe3O4 magnetic fluid under an alternating magnetic field only once as one hyperthermia group and repeated hyperthermia after 5 days as the other treated group.The distribution of magnetic fluid was evaluated by CT scanning.All animals were sacrificed 4 weeks after tumor implantation.The therapeutic effect was determined by tumor size and macroscopic and pathological examination of the liver tumor.The local higher density imaging of intratumoral magnetic fluid deposits compared to the surrounding tissue was clearly observed by CT scanning.Twenty-eight days after tumor implantation,the tumor maximal diameter and tumor volume of two hyperthermia were both significantly less than those of control groups (P<0.05).Tumor volume inhibition by single or repeated hyperthermia compared to the three control groups was 71.93-79.91% and 92.34-94.46% (P<0.05),respectively.Under a microscope,coagulation necrosis was observed in the heated area,which had a clear boundary line with the surrounding tissue.The intratumoral distribution of magnetic nanoparticles,especially in the area of necrosis,appeared much more homogenous than in the untreated ones.This study demonstrates that hyperthermia induced by direct intratumoral injection of magnetic fluid can be used safely,and a well-homogenized distribution of high intratumoral temperature without heating adjacent to normal tissue can be achieved.  相似文献   

19.
 为了制备性能良好的聚乙烯亚胺(PEI)修饰的磁性Fe3O4纳米粒,以及为进一步开展体内外生物学效应分析奠定基础,采用化学共沉淀法制备PEI修饰的磁性Fe3O4纳米粒。PEI-Fe3O4纳米粒的制备包括磁性Fe3O4纳米粒的制备和PEI修饰磁性Fe3O4纳米粒两部分,采用4因素2水平的正交实验对各因素进行优化,得到较佳的制备工艺。反应过程中用过量氨水保持pH值为9.3~9.7,Fe2+与Fe3+的物质的量比为1:1.75,PEI水溶液的质量百分数为20%,反应温度始终保持为85℃,机械搅拌速率为1400r/min。采用傅里叶变换红外光谱仪(FTIR)、透射电子显微镜(TEM)、X射线衍射分析仪(XRD)、振动样品磁强计(VSM)、热重分析仪(TGA)对磁性纳米粒的物化特征进行表征。结果表明,制得的磁性PEI-Fe3O4纳米粒为接近圆形或椭圆形粒子,具尖晶石结构,粒径约9.4nm,磁含量为82.3%,饱和磁化强度为61.962emu/g,矫顽力几乎为0,具超顺磁性,稳定性和分散性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号