首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of inversion symmetry and particle exchange, all constituents of homonuclear diatomic molecules are in a quantum mechanically non-local coherent state; this includes the nuclei and deep-lying core electrons. Hence, the molecular photoemission can be regarded as a natural double-slit experiment: coherent electron emission originates from two identical sites, and should give rise to characteristic interference patterns. However, the quantum coherence is obscured if the two possible symmetry states of the electronic wavefunction ('gerade' and 'ungerade') are degenerate; the sum of the two exactly resembles the distinguishable, incoherent emission from two localized core sites. Here we observe the coherence of core electrons in N(2) through a direct measurement of the interference exhibited in their emission. We also explore the gradual transition to a symmetry-broken system of localized electrons by comparing different isotope-substituted species--a phenomenon analogous to the acquisition of partial 'which-way' information in macroscopic double-slit experiments.  相似文献   

2.
Ji Y  Chung Y  Sprinzak D  Heiblum M  Mahalu D  Shtrikman H 《Nature》2003,422(6930):415-418
Double-slit electron interferometers fabricated in high mobility two-dimensional electron gases are powerful tools for studying coherent wave-like phenomena in mesoscopic systems. However, they suffer from low visibility of the interference patterns due to the many channels present in each slit, and from poor sensitivity to small currents due to their open geometry. Moreover, these interferometers do not function in high magnetic fields--such as those required to enter the quantum Hall effect regime--as the field destroys the symmetry between left and right slits. Here we report the fabrication and operation of a single-channel, two-path electron interferometer that functions in a high magnetic field. This device is the first electronic analogue of the optical Mach-Zehnder interferometer, and opens the way to measuring interference of quasiparticles with fractional charges. On the basis of measurements of single edge state and closed geometry transport in the quantum Hall effect regime, we find that the interferometer is highly sensitive and exhibits very high visibility (62%). However, the interference pattern decays precipitously with increasing electron temperature or energy. Although the origin of this dephasing is unclear, we show, via shot-noise measurements, that it is not a decoherence process that results from inelastic scattering events.  相似文献   

3.
采用解线性方程组的方法研究了同时存在磁通和Rashba自旋一轨道耦合的四端介观量子网络中电子的相干输运性质.计算结果表明,该量子网络中电子的相干输运是量子干涉和自旋进动的联合效应。这种四端多通道结构为调制电子的相干输运提供了更多的选择。  相似文献   

4.
The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated controlled exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.  相似文献   

5.
To illustrate the quantum mechanical principle of complementarity, Bohr described an interferometer with a microscopic slit that records the particle's path. Recoil of the quantum slit causes it to become entangled with the particle, resulting in a kind of Einstein-Podolsky-Rosen pair. As the motion of the slit can be observed, the ambiguity of the particle's trajectory is lifted, suppressing interference effects. In contrast, the state of a sufficiently massive slit does not depend on the particle's path; hence, interference fringes are visible. Although many experiments illustrating various aspects of complementarity have been proposed and realized, none has addressed the quantum-classical limit in the design of the interferometer. Here we report an experimental investigation of complementarity using an interferometer in which the properties of one of the beam-splitting elements can be tuned continuously from being effectively microscopic to macroscopic. Following a recent proposal, we use an atomic double-pulse Ramsey interferometer, in which microwave pulses act as beam-splitters for the quantum states of the atoms. One of the pulses is a coherent field stored in a cavity, comprising a small, adjustable mean photon number. The visibility of the interference fringes in the final atomic state probability increases with this photon number, illustrating the quantum to classical transition.  相似文献   

6.
The nonlinear Fano effect   总被引:1,自引:0,他引:1  
The Fano effect is ubiquitous in the spectroscopy of, for instance, atoms, bulk solids and semiconductor heterostructures. It arises when quantum interference takes place between two competing optical pathways, one connecting the energy ground state and an excited discrete state, the other connecting the ground state with a continuum of energy states. The nature of the interference changes rapidly as a function of energy, giving rise to characteristically asymmetric lineshapes. The Fano effect is particularly important in the interpretation of electronic transport and optical spectra in semiconductors. Whereas Fano's original theory applies to the linear regime at low power, at higher power a laser field strongly admixes the states and the physics becomes rich, leading, for example, to a remarkable interplay of coherent nonlinear transitions. Despite the general importance of Fano physics, this nonlinear regime has received very little attention experimentally, presumably because the classic autoionization processes, the original test-bed of Fano's ideas, occur in an inconvenient spectral region, the deep ultraviolet. Here we report experiments that access the nonlinear Fano regime by using semiconductor quantum dots, which allow both the continuum states to be engineered and the energies to be rescaled to the near infrared. We measure the absorption cross-section of a single quantum dot and discover clear Fano resonances that we can tune with the device design or even in situ with a voltage bias. In parallel, we develop a nonlinear theory applicable to solid-state systems with fast relaxation of carriers. In the nonlinear regime, the visibility of the Fano quantum interferences increases dramatically, affording a sensitive probe of continuum coupling. This could be a unique method to detect weak couplings of a two-level quantum system (qubits), which should ideally be decoupled from all other states.  相似文献   

7.
Eisenstein JP  Macdonald AH 《Nature》2004,432(7018):691-694
An exciton is the particle-like entity that forms when an electron is bound to a positively charged 'hole'. An ordered electronic state in which excitons condense into a single quantum state was proposed as a theoretical possibility many years ago. We review recent studies of semiconductor bilayer systems that provide clear evidence for this phenomenon and explain why exciton condensation in the quantum Hall regime, where these experiments were performed, is as likely to occur in electron-electron bilayers as in electron-hole bilayers. In current quantum Hall excitonic condensates, disorder induces mobile vortices that flow in response to a supercurrent and limit the extremely large bilayer counterflow conductivity.  相似文献   

8.
在量子力学研究领域中,人们发现了许多的非经典态,压缩态是其中的一类非经典态,由不确定性关系,处于压缩态的量子涨落小于相干态的量子涨落.人们期望利用这一性质去减少量子噪声,进行高精度信号的测量.所以玻色子的压缩态研究成为物理学研究领域很重要的研究课题.该文分析了二阶拉曼散射中温度因素对量子涨落的作用,讨论了温度对磁振子压缩态的影响,确定了压缩态存在的温度范围。  相似文献   

9.
Fabry - Perot interference in a nanotube electron waveguide   总被引:9,自引:0,他引:9  
Liang W  Bockrath M  Bozovic D  Hafner JH  Tinkham M  Park H 《Nature》2001,411(6838):665-669
The behaviour of traditional electronic devices can be understood in terms of the classical diffusive motion of electrons. As the size of a device becomes comparable to the electron coherence length, however, quantum interference between electron waves becomes increasingly important, leading to dramatic changes in device properties. This classical-to-quantum transition in device behaviour suggests the possibility for nanometer-sized electronic elements that make use of quantum coherence. Molecular electronic devices are promising candidates for realizing such device elements because the electronic motion in molecules is inherently quantum mechanical and it can be modified by well defined chemistry. Here we describe an example of a coherent molecular electronic device whose behaviour is explicitly dependent on quantum interference between propagating electron waves-a Fabry-Perot electron resonator based on individual single-walled carbon nanotubes with near-perfect ohmic contacts to electrodes. In these devices, the nanotubes act as coherent electron waveguides, with the resonant cavity formed between the two nanotube-electrode interfaces. We use a theoretical model based on the multichannel Landauer-Büttiker formalism to analyse the device characteristics and find that coupling between the two propagating modes of the nanotubes caused by electron scattering at the nanotube-electrode interfaces is important.  相似文献   

10.
通过对双模压缩态光场和两个电子干涉器件相互作用的研究,得到了两个电子干涉器件中电子密度的关联,并采用归一化关联函数来描述这种关联,发现通过选择合适的初始相位差,量子关联可以很好地从双模压缩态光场转移到电子。  相似文献   

11.
考察了依赖强度耦合的广义Jaynes-Cummings模型.假定初始时光场是相干态、原子处于相干迭加作者发现,在相位匹配条件下,初始场的相干态展示周期性的复原效应.同时,还证明了在描写光场的相干性方面,光场的量子相位与量子相干性是并协的.?烫  相似文献   

12.
Liu C  Dutton Z  Behroozi CH  Hau LV 《Nature》2001,409(6819):490-493
Electromagnetically induced transparency is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a 'coupling' laser is used to create the interference necessary to allow the transmission of resonant pulses from a 'probe' laser. This technique has been used to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud. Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is 'frozen' in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the 'read' and 'write' operations. We anticipate applications of this phenomenon for quantum information processing.  相似文献   

13.
采用数值计算方法研究了强相干初态光场与级联型三能级原子相互作用中的光子统计演化。结果表明:光子统计演化呈现Rabi型量子崩塌与回复的性质,随着值的不断增大,场与原子的非线性耦合越来越强,重复地出现回复收缩现象。  相似文献   

14.
实现量子态的隐形传送,尤其是多比特的量子态的隐形传送在量子信息领域中具有非常重要的作用。本文提出了一种用一个三原子和相干态腔场的纠缠态作为量子信道,隐形传送三比特的未知原子态的方案。  相似文献   

15.
Demonstration of a quantum teleportation network for continuous variables   总被引:1,自引:0,他引:1  
Yonezawa H  Aoki T  Furusawa A 《Nature》2004,431(7007):430-433
Quantum teleportation involves the transportation of an unknown quantum state from one location to another, without physical transfer of the information carrier. Although quantum teleportation is a naturally bipartite process, it can be extended to a multipartite protocol known as a quantum teleportation network. In such a network, entanglement is shared between three or more parties. For the case of three parties (a tripartite network), teleportation of a quantum state can occur between any pair, but only with the assistance of the third party. Multipartite quantum protocols are expected to form fundamental components for larger-scale quantum communication and computation. Here we report the experimental realization of a tripartite quantum teleportation network for quantum states of continuous variables (electromagnetic field modes). We demonstrate teleportation of a coherent state between three different pairs in the network, unambiguously demonstrating its tripartite character.  相似文献   

16.
构造了辐射场的一类新的非经典态,即双模真空态与相干态的叠加态.并讨论了它的非经典性质,即压缩效应、亚泊松分布、两模间二阶相关函数.数值计算结果表明,双模真空态与相干态的叠加态具有非常显著的非经典性质,因此双模真空态与相干态的叠加态是一类新的非经典光场态.  相似文献   

17.
从理论上研究了在横向极化的外电磁场辐照下量子线的电子态.使用量子光学中两能级原子与电磁场相互作用的半经典方法,得到了在自由电子和弱场假设下两能级电子与场相互作用的波函数表达式.此波函数包含了外场的频率和强度以及量子线的几何参量,由此可研究决定系统与时间有关的输运性质.  相似文献   

18.
Applying Gaussian quantum discord to quantum key distribution   总被引:1,自引:0,他引:1  
In this paper, we theoretically prove that the Gaussian quantum discord state of optical field can be used to complete continuous variable (CV) quantum key distri- bution (QKD). The calculation shows that secret key can be distilled with a Gaussian quantum discord state against entangling cloner attack. Secret key rate is increased with the increasing of quantum discord for CV QKD with the Gaussian quantum discord state. Although the calculated results point out that secret key rate using the Gaussian quantum discord state is lower than that using squeezed state and coherent state at the same energy level, we demonstrate that the Gaussian quantum discord, which only involving quantum correlation without the existence of entanglement, may provide a new resource for realizing CV QKD.  相似文献   

19.
对于有两个电子跃迁和两个核跃迁的双简并四能级系统——核-电组合系统,利用相干光学驱动电子跃迁产生的量子干涉,可以实现γ射线激光的无吸收折射率增强.  相似文献   

20.
Progress in the fabrication of nanometre-scale electronic devices is opening new opportunities to uncover deeper aspects of the Kondo effect--a characteristic phenomenon in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of delocalized electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we show that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunnelling. When orbital and spin degeneracies are present simultaneously, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU4 symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号