首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
赵险峰 《科技资讯》2010,(17):103-103
本文从机床及工件系统的振动和工件的刚性等方面分析了曲轴在连杆颈磨削的过程中振纹的产生机理,并结合工艺试验浅析解决方法。  相似文献   

2.
在高硬度球面磨削过程中发现了一种类爬行现象,通过对球面磨削的主轴 砂轮 工件系统物理建模,推导了实际进给量与理论进给量之间的关系,揭示了进给系统的刚度、进给量和进给时间间隔对进给误差的影响规律;分析了类爬行现象的发生机理及其对球面磨削质量和磨削效率的影响.为了避免球面磨削过程中类爬行现象造成的危害,提出了基于声音和电流信号的双阈值模糊自适应控制策略对高硬度球面磨削过程进行监控.实验结果表明,与定进给磨削方式相比,所提出的模糊控制策略提高了磨削过程稳定性和工件表面质量,有效抑制了类爬行现象的发生.  相似文献   

3.
40Cr超高速磨削工艺实验研究   总被引:1,自引:0,他引:1  
采用CBN砂轮,在砂轮线速度为90~210 m/s的磨削条件下,对40Cr进行了超高速磨削工艺实验.分析了在超高速磨削过程中砂轮周围气障对磨削过程的影响,讨论了砂轮线速度、切削深度、工件速度等工艺参数对磨削力、工件表面粗糙度、比磨削能的影响.实验表明,在高速超高速磨削过程中,砂轮速度提高使得磨削力大大减小,工件表面粗糙度值下降,工件表面质量得到提高;加大切削深度而工件表面粗糙度值增加不大,大大提高了磨削效率,同时也保证了工件表面质量.  相似文献   

4.
设计了平面砂带磨削中动态磨削温度实时采集和处理微机系统。对砂带磨削时表面层温度分布及工件表面最高温度进行了试验研究。提出了砂带磨削工件表面最高温度的理论计算方法,得出砂带磨削中工件表面层温度分布情况。表面最高温度的变化规律及烧伤产生的区域,为实际生产中预防加工变质层的产生提供了依据。  相似文献   

5.
磨削液参数对磨削强化表面微结构损伤的影响   总被引:1,自引:0,他引:1  
针对磨削强化过程中磨削液对磨削力和磨削温度场的影响,建立非调质45钢的磨削强化过程的仿真模型,分析不同磨削液参数对工件表面温度场及加工后残余应力的影响.最后,选择不同磨削液参数对45钢工件进行平面磨削强化试验,研究加工后工件表面硬度值及其表面完整性参数.试验结果表明,工件表面微结构损伤与磨削深度有密切的联系,在磨削过程中加入一定量的磨削液能有效降低表面微结构损伤,但削弱了在工件表面上由磨削热产生的强化能力.  相似文献   

6.
针对端面磨削加工接触表面热力学分布特征提出一种基于动态热力耦合效应的理论建模方法.首先,建立多颗磨粒运动轨迹数学模型;其次,基于磨粒运动轨迹与磨粒高度的动态分布特征对加工工件磨削力进行解析求解;根据求得的磨削力,运用有限差分法(FDM)对端面磨削工件表面动态热力耦合过程进行分析;最后,分别采用有限元法(FEM)和端面磨削实验验证理论分析的合理性.结果表明:动态热力耦合的均一化程度会引起加工工件表面轮廓高度的差异性,减小砂轮转速可改善加工工件表面轮廓.  相似文献   

7.
本文根据机床的振动理论,对C6240F型车床进行了动态特性实验研究,通过对该机床的激振 试验,论证了机床的各阶固有频率,测定并论述了机床各振型,分析了该机床的薄弱环节,对机 床提出了改进设计建议。  相似文献   

8.
在磨削过程中,砂轮工作表面的磨粒对工件进行三种不同特点的作用:切削、塑性挤压和弹性挤压。这三种作用所产生的热量及砂轮结合剂对工件表面的摩擦,在砂轮与工件接触区形成积分平均温度。本文提出了积分平均温度及工件内温度分布的测定和计算方法,并研究了各种磨削因素对它们的影响。  相似文献   

9.
为避免高硬度球面磨削过程中工件表面被拉毛,测量电主轴电流而间接获得磨削力,以电主轴电流作为反馈量来控制高硬度球面磨削过程中的磨削力.针对高硬度球面磨削过程中磨削力的特点,采用基于动态阈值的模糊自适应控制策略(DTFACO),自动获取并实时调整电流阈值,对影响磨削力的磨削深度和摆动角速度在线模糊调整,以适应磨削过程并保持磨削过程稳定.实验结果表明,与定进给磨削方式(FFSG)磨削高硬度球面相比,在不降低磨削效率的情况下,DTFACO可以减小磨削后工件表面粗糙度,避免了高硬度球面磨削过程中工件表面被拉毛的现象.  相似文献   

10.
主轴的动态误差和热漂移误差直接影响机床的定位精度和工件表面加工质量。运用API主轴动态误差及热变形分析仪和API主轴误差分析软件对加工中心的主轴进行动态误差和热漂移测试。通过测量系统采集到的机床主轴系统的温度变化及分布数据及主轴系统的热变形数据,可以了解及掌握机床在运转过程中主轴系统的实际工况,如热平衡时间、主轴系统不同时刻在各方向的变形量等信息,对以后主轴系统的优化设计和动态补偿提供了基础数据支撑。  相似文献   

11.
为了实现基于磨削参数预测工件的摩擦性能,并减少测量真实表面形貌和开展摩擦磨损试验等环节,在考虑砂轮磨粒切削刃与工件运动干涉的条件下,结合单点金刚石修整和参数设定建立了磨削后的工件表面形貌模型,并利用混合润滑雷诺方程分析不同磨削形貌下的压力分布及摩擦系数.同时,以机床导轨磨削平面的润滑特性为例验证了所建模型的有效性.结果表明,当磨削表面上、下纹理方向夹角均为0°时,摩擦副的摩擦系数最大.  相似文献   

12.
建立了机床-刀具-工件整体工艺系统综合动刚度场模型,采用实验和仿真相结合的方法计算综合动刚度场.该动刚度场可反映整体工艺系统在工作空间中不同加工位置、不同刀具-工件相对姿态的综合动刚度分布规律.提出了表征整体工艺系统综合动刚度性能的指标,该指标能定量描述多轴加工工艺系统动刚度较弱的频率区间和刚度软化的程度,可用于指导加工稳定性建模与分析.  相似文献   

13.
本文研究了半自动内圆磨床静刚度和动刚度对加工精度的影响以及刚度的测定方法。研究结果表明,原始误差复映所造成的加工误差是随机性的,在加工总误差中占有相当大的比重,其大小决定于工艺系统的刚度及其它因素。文中运用Γ.Б.ЛУрЬе的基本公式求解复映误差,并用相关分析法对实验数据进行处理,估计复映误差占总误差的比例。所用静刚度测定装置,可以方便地测定内圆磨床各部件的静刚度,并可在实际生产中应用。机床动刚度不仅导致尺寸误差,而且对工件的几何形状有很大的影响,作者研究了动刚度的测定方法,比较成功的有两种:一种是光测法,利用(?)闪测速仪、高倍显微镜和专用顶尖,观察磨杆的振动,测出其振幅值,经计算求得动力系数μ=1.12~1.42;另一种是电测法,借助电容式传感器,调频放大器和八线示波器测得三种磨杆的振动波形。通过试验验证了刚度对加工精度的影响,初步得出了提高刚度的方向。  相似文献   

14.
三维动态磨削力测量平台结构设计   总被引:1,自引:0,他引:1  
为了实现叶片磨削过程中磨削力的精确测控,针对磨削力变化的高动态特性,提出了采用相互正交的独立弹性元件测量三向正交磨削力的方法,并设计出电阻应变式三维动态磨削力测量平台.通过运用材料力学相关公式进行数学推导和Workbench有限元仿真及实际测试实验验证了其性能.实验表明上述方法有效解决了测力仪固有频率与灵敏度之间的矛盾,并在结构上降低了各向磨削力测量之间的向间耦合程度,为实现高频磨削力的实时精确检测提供了技术保障.  相似文献   

15.
本文对磨削过程中的温度测定方法、工件断面金相实验以及工件表面温度场的形成与分布计算作了比较全面的分析研究.  相似文献   

16.
轴承的支撑特性与主轴系统的动态特性直接影响着磨削加工质量,液体动静压主轴系统的动态特性主要体现在轴承的支撑刚度与阻尼.首先使用流体动力学分析技术对液体动静压轴承进行不同参数下的油膜承载能力、油膜温度场分析,进而使用动网格技术对油膜支撑刚度与阻尼进行分析.然后将所得到的支撑刚度与阻尼转化为等效模型应用到主轴系统动态特性有限元分析中,对主轴系统进行动态特性分析.最后采用实验方法测量主轴系统固有频率以验证分析方法的正确性.  相似文献   

17.
本文从控制论的观点,分析了机床切削加工系统的稳定性,在所建立的数学模型中,不仅考虑了再生效应而且考虑了速度原生效应的作用;设计并实验研究了利用机床刀具和工件之间的相对振动信号来反馈控制阻尼力的主动阻振系统,采用了相位补偿的方法改善了控制系统各环节动态特性的影响,并采用了滤波器来提高信噪比。在车床上进行的实验结果表明,控制消振系统的抑制振动的效果非常明显,机床的动态刚度有显著的提高。  相似文献   

18.
本研究工作对于磨削不同工件材料时,对其温度的测量进行了试验研究,提出了新的测温方法.实验结果表明:该方法是稳定可靠的.  相似文献   

19.
为解决高速车削对工件夹紧系统要求越来越高的问题,采用理论分析、有限元计算和实验研究相结合的方法定量分析了高速旋转卡盘和工件刚度对动态夹紧力的影响规律。研究表明:并非100%的卡爪离心力转化为卡盘的动态夹紧力损失,工件刚度越低,动态夹紧力损失越小。卡盘通过其径向刚度和弯曲刚度综合影响动态夹紧力变化,高的卡盘单元径向刚度对降低动态夹紧力损失有利;在工件刚度较大时,采用较低的卡盘弯曲刚度有助于降低动态夹紧力损失。该文的计算模型具有较高的精度,对提高高速车削过程的安全性并充分发挥卡盘的高速潜能以及高速卡盘的优化设计与应用具有重要意义。  相似文献   

20.
为解决高速车削对工件夹紧系统要求越来越高的问题,采用理论分析、有限元计算和实验研究相结合的方法定量分析了高速旋转卡盘和工件刚度对动态夹紧力的影响规律。研究表明:并非100%的卡爪离心力转化为卡盘的动态夹紧力损失,工件刚度越低,动态夹紧力损失越小。卡盘通过其径向刚度和弯曲刚度综合影响动态夹紧力变化,高的卡盘单元径向刚度对降低动态夹紧力损失有利;在较大工件刚度时,采用较低的卡盘弯曲刚度有助于降低动态夹紧力损失。该文的计算模型具有较高的精度,对提高高速车削过程安全性并充分发挥卡盘的高速潜能以及高速卡盘的优化设计与应用具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号