首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yuen G  Blair N  Des Marais DJ  Chang S 《Nature》1984,307(5948):252-254
The origin of the organic matter in carbonaceous meteorites remains controversial despite extensive study over the past 20 yr. Motivated by the expectation that the patterns of isotopic variation with molecular structure among the organic compounds would contain important clues to their origin, we have measured the carbon isotopic compositions for individual hydrocarbons and monocarboxylic acids from Murchison meteorite, a C2 carbonaceous chondrite which fell in Australia in 1969. With few exceptions, notably benzene, the volatile products are substantially isotopically heavier than their terrestrial counterparts, signifying their extraterrestrial origin. For both classes of compounds, the ratio of 13C to 12C decreases with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic ratio than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with the kinetically controlled synthesis of higher homologues from lower ones. The results suggest the possibility that the production mechanisms for hydrocarbons and carboxylic acids may be similar; they also impose constraints on the identity of the reactant species.  相似文献   

2.
Engel MH  Macko SA  Silfer JA 《Nature》1990,348(6296):47-49
A significant portion of prebiotic organic matter on the early Earth may have been introduced by carbonaceous asteroids and comets. The distribution and stable-isotope composition of individual organic compounds in carbonaceous meteorites, which are thought to be derived from asteroidal parent bodies, may therefore provide important information concerning mechanistic pathways for prebiotic synthesis and the composition of organic matter on Earth before living systems developed. Previous studies have shown that meteorite amino acids are enriched in 13C relative to their terrestrial counterparts, but individual species were not distinguished. Here we report the 13C contents of individual amino acids in the Murchison meteorite. The amino acids are enriched in 13C, indicating an extraterrestrial origin. Alanine is not racemic, and the 13C enrichment of its D- and L-enantiomers implies that the excess of the L-enantiomer is indigenous rather than terrestrial contamination, suggesting that optically active materials were present in the early Solar System before life began.  相似文献   

3.
The delivery of extraterrestrial organic molecules to Earth by meteorites may have been important for the origin and early evolution of life. Indigenous amino acids have been found in meteorites-over 70 in the Murchison meteorite alone. Although it has been generally accepted that the meteoritic amino acids formed in liquid water on a parent body, the water in the Murchison meteorite is depleted in deuterium relative to the indigenous organic acids. Moreover, the meteoritical evidence for an excess of laevo-rotatory amino acids is hard to understand in the context of liquid-water reactions on meteorite parent bodies. Here we report a laboratory demonstration that glycine, alanine and serine naturally form from ultraviolet photolysis of the analogues of icy interstellar grains. Such amino acids would naturally have a deuterium excess similar to that seen in interstellar molecular clouds, and the formation process could also result in enantiomeric excesses if the incident radiation is circularly polarized. These results suggest that at least some meteoritic amino acids are the result of interstellar photochemistry, rather than formation in liquid water on an early Solar System body.  相似文献   

4.
Much effort has been directed to analyses of organic compounds in carbonaceous chondrites because of their implications for organic chemical evolution and the origin of life. We have determined the isotopic composition of hydrogen, nitrogen and carbon in amino acid and monocarboxylic acid extracts from the Murchison meteorite. The unusually high D/H and 15N/14N ratios in the amino acid fraction (delta D = 1,370% after correction for isotope exchange; delta 15N = 90) are uniquely characteristic of known interstellar organic materials. The delta D value of the monocarboxylic acid fraction is lower (377%), but still consistent with an interstellar origin. These results confirm the extraterrestrial origin of both classes of compound, and provide the first evidence suggesting a direct relationship between the massive organo-synthesis occurring in interstellar clouds and the presence of pre-biotic compounds in primitive planetary bodies. The isotope data also bear on the historical problem of distinguishing indigenous material from terrestrial contaminants.  相似文献   

5.
Owen T  Bar-Nun A  Kleinfeld I 《Nature》1992,358(6381):43-46
Models that trace the origin of noble gases in the atmospheres of the terrestrial planets (Venus, Earth and Mars) to the 'planetary component' in chondritic meteorites confront several problems. The 'missing' xenon in the atmospheres of Mars and Earth is one of the most obvious; this gas is not hidden or trapped in surface materials. On Venus, the absolute abundances of neon and argon per gram of rock are higher even than those in carbonaceous chondrites, whereas the relative abundances of argon and krypton are closer to solar than to chondritic values (there is only an upper limit on xenon). Pepin has developed a model that emphasizes hydrodynamic escape of early, massive hydrogen atmospheres to explain the abundances and isotope ratios of noble gases on all three planets. We have previously suggested that the unusual abundances of heavy noble gases on Venus might be explained by the impact of a low-temperature comet. Further consideration of the probable history of the martian atmosphere, the noble-gas data from the (Mars-derived) SNC meteorites and laboratory experiments on the trapping of noble gases in ice lead us to propose here that the noble gases in the atmospheres of all of the terrestrial planets are dominated by a mixture of an internal component and contribution from impacting icy planetesimals (comets). If true, this hypothesis illustrates the importance of impacts in determining the volatile inventories of these planets.  相似文献   

6.
Sulphur is abundant at the martian surface, yet its origin and evolution over time remain poorly constrained. This sulphur is likely to have originated in atmospheric chemical reactions, and so should provide records of the evolution of the martian atmosphere, the cycling of sulphur between the atmosphere and crust, and the mobility of sulphur in the martian regolith. Moreover, the atmospheric deposition of oxidized sulphur species could establish chemical potential gradients in the martian near-surface environment, and so provide a potential energy source for chemolithoautotrophic organisms. Here we present measurements of sulphur isotopes in oxidized and reduced phases from the SNC meteorites--the group of related achondrite meteorites believed to have originated on Mars--together with the results of laboratory photolysis studies of two important martian atmospheric sulphur species (SO2 and H2S). The photolysis experiments can account for the observed sulphur-isotope compositions in the SNC meteorites, and so identify a mechanism for producing large abiogenic 34S fractionations in the surface sulphur reservoirs. We conclude that the sulphur data from the SNC meteorites reflects deposition of oxidized sulphur species produced by atmospheric chemical reactions, followed by incorporation, reaction and mobilization of the sulphur within the regolith.  相似文献   

7.
火星电离层早期的观测数据非常少,除了Viking登陆器对火星电离层的在位测量外,火星电离层的主要物理信息是通过掩星观测方法得到的.近年来,Mars Global Surveyor和Mars Express轨道器通过掩星观测的方法对火星的上层大气和电离层进行了长期的观测,得到了大量的火星电离层电子密度廓线资料.火星电离层受到来自太阳EUV和X射线辐射、太阳风、太阳耀斑、中性大气、表面壳磁场、宇宙射线、流星等多种因素的影响,使其结构发生瞬态或季节性的变化.本文介绍了行星无线电掩星探测的基本原理和技术特点,回顾了国内外科学家们基于已有的火星掩星观测数据(主要是Mars GlobalSurveyor和Mars Express)在火星电离层研究中的一些最新科学成果,并详细介绍了火星电离层的结构和火星夜间电离层的主要特征.  相似文献   

8.
G Cooper  N Kimmich  W Belisle  J Sarinana  K Brabham  L Garrel 《Nature》2001,414(6866):879-883
The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.  相似文献   

9.
Shock EL  Schulte MD 《Nature》1990,343(6260):728-731
It has been suggested that amino acids and other organic compounds found in carbonaceous meteorites formed by aqueous alteration in the meteorite parent bodies. Observations of carbonaceous material in interstellar grains and interplanetary dust particles indicate that condensed organic compounds may have been present in meteorite parent bodies at the time of aqueous alteration. One group of compounds thought to be representative of this carbonaceous material is the polycyclic aromatic hydrocarbons (PAHs). Recently it was proposed that PAHs condense on SiC grains in the molecular envelopes of carbon-rich red-giant stars, which would allow for their subsequent incorporation into meteorite parent bodies during accretion. This incorporation mechanism is supported by the identification of SiC grains in carbonaceous chondrites. The possibility therefore exists that PAHs, and/or other condensed organic compounds, represent the starting material for aqueous alteration which leads to the formation of amino acids and other water-soluble organic compounds. Here we present calculations of the distribution of aqueous organic compounds in metastable equilibrium with representative PAHs as functions of the fugacities of O2, CO2 and NH3. The results reported here for pyrene and fluoranthene, two PAHs with different structures but the same stoichiometry, differ greatly but indicate that the formation of amino and carboxylic acids is energetically favourable at probable parent-body alteration conditions. The actual reaction mechanisms involved could be revealed by consideration of isotope data for PAHs, amino acids, other organic compounds and carbonates in carbonaceous chondrites.  相似文献   

10.
Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.  相似文献   

11.
Impact erosion of the primordial atmosphere of Mars   总被引:2,自引:0,他引:2  
Melosh HJ  Vickery AM 《Nature》1989,338(6215):487-489
Abundant geomorphic evidence for fluvial processes on the surface of Mars suggests that during the era of heavy bombardment, Mars's atmospheric pressure was high enough for liquid water to flow on the surface. Many authors have proposed mechanisms by which Mars could have lost (or sequestered) an earlier, thicker atmosphere but none of these proposals has gained general acceptance. Here we examine the process of atmospheric erosion by impacts and show that it may account for an early episode of atmosphere loss from Mars. On the basis of this model, the primordial atmospheric pressure on Mars must have been in the vicinity of 1 bar, barring other sources or sinks of CO2. Current impact fluxes are too small to erode significantly the present martian atmosphere.  相似文献   

12.
我国开展的火星探测萤火计划(YH-1)的研究中,用地基掩星观测反演火星大气是其中一个重要的组成部分.由于各种观测资料处于日心和火星坐标系中,不易利用和处理.本文通过矩阵变换建立掩星坐标系,把原始的观测资料统一到同一个坐标系中,为掩星数据的分析处理提供了技术准备.  相似文献   

13.
Kleine T  Münker C  Mezger K  Palme H 《Nature》2002,418(6901):952-955
The timescales and mechanisms for the formation and chemical differentiation of the planets can be quantified using the radioactive decay of short-lived isotopes. Of these, the (182)Hf-to-(182)W decay is ideally suited for dating core formation in planetary bodies. In an earlier study, the W isotope composition of the Earth's mantle was used to infer that core formation was late (> or = 60 million years after the beginning of the Solar System) and that accretion was a protracted process. The correct interpretation of Hf-W data depends, however, on accurate knowledge of the initial abundance of (182)Hf in the Solar System and the W isotope composition of chondritic meteorites. Here we report Hf-W data for carbonaceous and H chondrite meteorites that lead to timescales of accretion and core formation significantly different from those calculated previously. The revised ages for Vesta, Mars and Earth indicate rapid accretion, and show that the timescale for core formation decreases with decreasing size of the planet. We conclude that core formation in the terrestrial planets and the formation of the Moon must have occurred during the first approximately 30 million years of the life of the Solar System.  相似文献   

14.
Towe KM 《Nature》1990,348(6296):54-56
The Earth's atmosphere during the Archaean era (3,800-2,500 Myr ago) is generally thought to have been anoxic, with the partial pressure of atmospheric oxygen about 10(-12) times the present value. In the absence of aerobic consumption of oxygen produced by photosynthesis in the ocean, the major sink for this oxygen would have been oxidation of dissolved Fe(II). Atmospheric oxygen would also be removed by the oxidation of biogenic methane. But even very low estimates of global primary productivity, obtained from the amounts of organic carbon preserved in Archaean rocks, seem to require the sedimentation of an unrealistically large amount of iron and the oxidation of too much methane if global anoxia was to be maintained. I therefore suggest that aerobic respiration must have developed early in the Archaean to prevent a build-up of atmospheric oxygen before the Proterozoic. An atmosphere that contained a low (0.2-0.4%) but stable proportion of oxygen is required.  相似文献   

15.
Tobie G  Lunine JI  Sotin C 《Nature》2006,440(7080):61-64
Saturn's largest satellite, Titan, has a massive nitrogen atmosphere containing up to 5 per cent methane near its surface. Photochemistry in the stratosphere would remove the present-day atmospheric methane in a few tens of millions of years. Before the Cassini-Huygens mission arrived at Saturn, widespread liquid methane or mixed hydrocarbon seas hundreds of metres in thickness were proposed as reservoirs from which methane could be resupplied to the atmosphere over geologic time. Titan fly-by observations and ground-based observations rule out the presence of extensive bodies of liquid hydrocarbons at present, which means that methane must be derived from another source over Titan's history. Here we show that episodic outgassing of methane stored as clathrate hydrates within an icy shell above an ammonia-enriched water ocean is the most likely explanation for Titan's atmospheric methane. The other possible explanations all fail because they cannot explain the absence of surface liquid reservoirs and/or the low dissipative state of the interior. On the basis of our models, we predict that future fly-bys should reveal the existence of both a subsurface water ocean and a rocky core, and should detect more cryovolcanic edifices.  相似文献   

16.
An influence of solar spectral variations on radiative forcing of climate   总被引:3,自引:0,他引:3  
Haigh JD  Winning AR  Toumi R  Harder JW 《Nature》2010,467(7316):696-699
The thermal structure and composition of the atmosphere is determined fundamentally by the incoming solar irradiance. Radiation at ultraviolet wavelengths dissociates atmospheric molecules, initiating chains of chemical reactions-specifically those producing stratospheric ozone-and providing the major source of heating for the middle atmosphere, while radiation at visible and near-infrared wavelengths mainly reaches and warms the lower atmosphere and the Earth's surface. Thus the spectral composition of solar radiation is crucial in determining atmospheric structure, as well as surface temperature, and it follows that the response of the atmosphere to variations in solar irradiance depends on the spectrum. Daily measurements of the solar spectrum between 0.2?μm and 2.4?μm, made by the Spectral Irradiance Monitor (SIM) instrument on the Solar Radiation and Climate Experiment (SORCE) satellite since April 2004, have revealed that over this declining phase of the solar cycle there was a four to six times larger decline in ultraviolet than would have been predicted on the basis of our previous understanding. This reduction was partially compensated in the total solar output by an increase in radiation at visible wavelengths. Here we show that these spectral changes appear to have led to a significant decline from 2004 to 2007 in stratospheric ozone below an altitude of 45?km, with an increase above this altitude. Our results, simulated with a radiative-photochemical model, are consistent with contemporaneous measurements of ozone from the Aura-MLS satellite, although the short time period makes precise attribution to solar effects difficult. We also show, using the SIM data, that solar radiative forcing of surface climate is out of phase with solar activity. Currently there is insufficient observational evidence to validate the spectral variations observed by SIM, or to fully characterize other solar cycles, but our findings raise the possibility that the effects of solar variability on temperature throughout the atmosphere may be contrary to current expectations.  相似文献   

17.
Kinetics study of gaseous hydrocarbons generated from vitrinites based on pyrolysis of gold tube closed system shows that the activation energies of methane generated from telocollinite are higher than that from desmocol-linite due to structure differences. But carbon isotope ratios of generated methane in pyrolysates of vitrinites at the same temperature points are similar. Carbon isotope ratio of methane may decrease in the early stage of gas generation and then increase in the later stage. But at higher temperature, δ13C1 decreases slightly or almost keeps stable with increasing temperature. Since it is known that carbon isotope distillation is controlled by time, temperature and carbon isotope ratio of bulk organic matter, the character of side chains connected to macromolecule of vitrinite and distribution of activation energies have no obvious effect on carbon isotope fraction. Decreasing trend of δ13C1 in the early stage may be caused by contagious structure of vitrinite or differences of activation energies between 12C-12C and 12C-13C are not strictly constant at different ranges of activation energy area.  相似文献   

18.
Anomalous 17O compositions in massive sulphate deposits on the Earth   总被引:5,自引:0,他引:5  
Bao H  Thiemens MH  Farquhar J  Campbell DA  Lee CC  Heine K  Loope DB 《Nature》2000,406(6792):176-178
The variation of delta 18O that results from nearly all physical, biological and chemical processes on the Earth is approximately twice as large as the variation of delta 17O. This so-called 'mass-dependent' fractionation is well documented in terrestrial minerals. Evidence for 'mass-independent' fractionation (delta 17O = delta 17O-0.52 delta 18O), where deviation from this tight relationship occurs, has so far been found only in meteoritic material and a few terrestrial atmospheric substances. In the rock record it is thought that oxygen isotopes have followed a mass-dependent relationship for at least the past 3.7 billion years, and no exception to this has been encountered for terrestrial solids. Here, however, we report oxygen-isotope values of two massive sulphate mineral deposits, which formed in surface environments on the Earth but show large isotopic anomalies (delta 17O up to 4.6%). These massive sulphate deposits are gypcretes from the central Namib Desert and the sulphate-bearing Miocene volcanic ash-beds in North America. The source of this isotope anomaly might be related to sulphur oxidation reactions in the atmosphere and therefore enable tracing of such oxidation. These findings also support the possibility of a chemical origin of variable isotope anomalies on other planets, such as Mars.  相似文献   

19.
Hessler AM  Lowe DR  Jones RL  Bird DK 《Nature》2004,428(6984):736-738
The quantification of greenhouse gases present in the Archaean atmosphere is critical for understanding the evolution of atmospheric oxygen, surface temperatures and the conditions for life on early Earth. For instance, it has been argued that small changes in the balance between two potential greenhouse gases, carbon dioxide and methane, may have dictated the feedback cycle involving organic haze production and global cooling. Climate models have focused on carbon dioxide as the greenhouse gas responsible for maintaining above-freezing surface temperatures during a time of low solar luminosity. However, the analysis of 2.75-billion-year (Gyr)-old palaeosols--soil samples preserved in the geologic record--have recently provided an upper constraint on atmospheric carbon dioxide levels well below that required in most climate models to prevent the Earth's surface from freezing. This finding prompted many to look towards methane as an additional greenhouse gas to satisfy climate models. Here we use model equilibrium reactions for weathering rinds on 3.2-Gyr-old river gravels to show that the presence of iron-rich carbonate relative to common clay minerals requires a minimum partial pressure of carbon dioxide several times higher than present-day values. Unless actual carbon dioxide levels were considerably greater than this, climate models predict that additional greenhouse gases would still need to have a role in maintaining above-freezing surface temperatures.  相似文献   

20.
The ubiquitous atmospheric dust on Mars is well mixed by periodic global dust storms, and such dust carries information about the environment in which it once formed and hence about the history of water on Mars. The Mars Exploration Rovers have permanent magnets to collect atmospheric dust for investigation by instruments on the rovers. Here we report results from M?ssbauer spectroscopy and X-ray fluorescence of dust particles captured from the martian atmosphere by the magnets. The dust on the magnets contains magnetite and olivine; this indicates a basaltic origin of the dust and shows that magnetite, not maghemite, is the mineral mainly responsible for the magnetic properties of the dust. Furthermore, the dust on the magnets contains some ferric oxides, probably including nanocrystalline phases, so some alteration or oxidation of the basaltic dust seems to have occurred. The presence of olivine indicates that liquid water did not play a dominant role in the processes that formed the atmospheric dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号