首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
    
Artificial neural network (ANN) combined with signal decomposing methods is effective for long‐term streamflow time series forecasting. ANN is a kind of machine learning method utilized widely for streamflow time series, and which performs well in forecasting nonstationary time series without the need of physical analysis for complex and dynamic hydrological processes. Most studies take multiple factors determining the streamflow as inputs such as rainfall. In this study, a long‐term streamflow forecasting model depending only on the historical streamflow data is proposed. Various preprocessing techniques, including empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and discrete wavelet transform (DWT), are first used to decompose the streamflow time series into simple components with different timescale characteristics, and the relation between these components and the original streamflow at the next time step is analyzed by ANN. Hybrid models EMD‐ANN, EEMD‐ANN and DWT‐ANN are developed in this study for long‐term daily streamflow forecasting, and performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and Nash–Sutcliffe efficiency (NSE) indicate that the proposed EEMD‐ANN method performs better than EMD‐ANN and DWT‐ANN models, especially in high flow forecasting.  相似文献   

2.
    
In this paper we propose and test a forecasting model on monthly and daily spot prices of five selected exchange rates. In doing so, we combine a novel smoothing technique (initially applied in signal processing) with a variable selection methodology and two regression estimation methodologies from the field of machine learning (ML). After the decomposition of the original exchange rate series using an ensemble empirical mode decomposition (EEMD) method into a smoothed and a fluctuation component, multivariate adaptive regression splines (MARS) are used to select the most appropriate variable set from a large set of explanatory variables that we collected. The selected variables are then fed into two distinctive support vector machines (SVR) models that produce one‐period‐ahead forecasts for the two components. Neural networks (NN) are also considered as an alternative to SVR. The sum of the two forecast components is the final forecast of the proposed scheme. We show that the above implementation exhibits a superior in‐sample and out‐of‐sample forecasting ability when compared to alternative forecasting models. The empirical results provide evidence against the efficient market hypothesis for the selected foreign exchange markets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
    
For forecasting nonstationary and nonlinear energy prices time series, a novel adaptive multiscale ensemble learning paradigm incorporating ensemble empirical mode decomposition (EEMD), particle swarm optimization (PSO) and least square support vector machines (LSSVM) with kernel function prototype is developed. Firstly, the extrema symmetry expansion EEMD, which can effectively restrain the mode mixing and end effects, is used to decompose the energy price into simple modes. Secondly, by using the fine‐to‐coarse reconstruction algorithm, the high‐frequency, low‐frequency and trend components are identified. Furthermore, autoregressive integrated moving average is applicable to predicting the high‐frequency components. LSSVM is suitable for forecasting the low‐frequency and trend components. At the same time, a universal kernel function prototype is introduced for making up the drawbacks of single kernel function, which can adaptively select the optimal kernel function type and model parameters according to the specific data using the PSO algorithm. Finally, the prediction results of all the components are aggregated into the forecasting values of energy price time series. The empirical results show that, compared with the popular prediction methods, the proposed method can significantly improve the prediction accuracy of energy prices, with high accuracy both in the level and directional predictions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
    
Peak power load forecasting is a key part of the commercial operation of the energy industry. Although various load forecasting methods and technologies have been put forward and tested in practice, the growing subject of tolerance for abnormal accidents is to develop robust peak load forecasting models. In this paper, we propose a robust smooth non-convex support vector regression method, which improves the robustness of the model by adjusting adaptive control loss values and adaptive robust parameters and by reducing the negative impact of outliers or noise on the decision function. A concave-convex programming algorithm is used to solve the non-convexity of the optimization problem. Good results are obtained in both linear regression model and nonlinear regression model and two real data sets. An experiment is carried out in a power company in Jiangxi Province, China, to evaluate the performance of the robust smooth non-convex support vector regression model. The results show that the proposed method is superior to support vector regression and generalized quadratic non-convex support vector regression in robustness and generalization ability.  相似文献   

5.
针对电力系统多因素负荷预测问题的复杂性,结合粗糙集理论与GM(1,N)模型各自的优势,提出一种基于粗糙集理论的GM(1,N)预测模型.采取粗糙集理论对影响负荷预测因素进行简约,利用GM(1,N)建立简约后的因素变量和负荷之间的关系建立模型,并与GM(1,1)预测模型进行了比较,结果反映基于粗糙集理论的GM(1,N)预测模型的优越性,精准度达到94.055%.  相似文献   

6.
    
We studied the predictability of intraday stock market returns using both linear and nonlinear time series models. For the S&P 500 index we compared simple autoregressive and random walk linear models with a range of nonlinear models, including smooth transition, Markov switching, artificial neural network, nonparametric kernel regression and support vector machine models for horizons of 5, 10, 20, 30 and 60 minutes. The empirical results indicate that nonlinear models outperformed linear models on the basis of both statistical and economic criteria. Specifically, although return serial correlation receded by around 10 minutes, return predictability still persisted for up to 60 minutes according to nonlinear models, even though profitability decreases as time elapses. More flexible nonlinear models such as support vector machines and artificial neural network did not clearly outperform other nonlinear models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
    
Recently, support vector machine (SVM), a novel artificial neural network (ANN), has been successfully used for financial forecasting. This paper deals with the application of SVM in volatility forecasting under the GARCH framework, the performance of which is compared with simple moving average, standard GARCH, nonlinear EGARCH and traditional ANN‐GARCH models by using two evaluation measures and robust Diebold–Mariano tests. The real data used in this study are daily GBP exchange rates and NYSE composite index. Empirical results from both simulation and real data reveal that, under a recursive forecasting scheme, SVM‐GARCH models significantly outperform the competing models in most situations of one‐period‐ahead volatility forecasting, which confirms the theoretical advantage of SVM. The standard GARCH model also performs well in the case of normality and large sample size, while EGARCH model is good at forecasting volatility under the high skewed distribution. The sensitivity analysis to choose SVM parameters and cross‐validation to determine the stopping point of the recurrent SVM procedure are also examined in this study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
    
The most up‐to‐date annual average daily traffic (AADT) is always required for transport model development and calibration. However, the current‐year AADT data are not always available. The short‐term traffic flow forecasting models can be used to predict the traffic flows for the current year. In this paper, two non‐parametric models, non‐parametric regression (NPR) and Gaussian maximum likelihood (GML), are chosen for short‐term traffic forecasting based on historical data collected for the annual traffic census (ATC) in Hong Kong. These models are adapted as they are more flexible and efficient in forecasting the daily vehicular flows in the Hong Kong ATC core stations (in total of 87 stations). The daily vehicular flows predicted by these models are then used to calculate the AADT of the current year, 1999. The overall prediction and comparison results show that the NPR model produces better forecasts than the GML model using the ATC data in Hong Kong. Copyright © 2006 John Wiley _ Sons, Ltd.  相似文献   

9.
低密度奇偶校验码(LDPC码)被普遍认为是当今最先进的一种纠错码(信道编码)。LDPC码,图模型,迭代译码的研究热潮已在全球流行有10年以上。这篇论文高度概括的简述了LDPC码的背景和基本知识,从一些独特的视角并联系多个领域提出一些对LDPC码相关知识的理解方法和见解主张,总结了LDPC码当今最新的研究进展。从理论和应用两方面提出作者认为非常有意义的研究问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号