首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent studies suggest realized volatility provides forecasts that are as good as option‐implied volatilities, with improvement stemming from the use of high‐frequency data instead of a long‐memory specification. This paper examines whether volatility persistence can be captured by a longer dataset consisting of over 15 years of intra‐day data. Volatility forecasts are evaluated using four exchange rates (AUD/USD, EUR/USD, GBP/USD, USD/JPY) over horizons ranging from 1 day to 3 months, using an expanded set of short‐range and long‐range dependence models. The empirical results provide additional evidence that significant incremental information is found in historical forecasts, beyond the implied volatility information for all forecast horizons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation.  相似文献   

3.
Inspired by the commonly held view that international stock market volatility is equivalent to cross-market information flow, we propose various ways of constructing two types of information flow, based on realized volatility (RV) and implied volatility (IV), in multiple international markets. We focus on the RVs derived from the intraday prices of eight international stock markets and use a heterogeneous autoregressive framework to forecast the future volatility of each market for 1 day to 22 days ahead. Our Diebold-Mariano tests provide strong evidence that information flow with IV enhances the accuracy of forecasting international RVs over all of the prediction horizons. The results of a model confidence set test show that a market's own IV and the first principal component of the international IVs exhibit the strongest predictive ability. In addition, the use of information flows with IV can further increase economic returns. Our results are supported by the findings of a wide range of robustness checks.  相似文献   

4.
This paper considers how information from the implied volatility (IV) term structure can be harnessed to improve stock return volatility forecasting within the state-of-the-art HAR model. Factors are extracted from the IV term structure and included as exogenous variables in the HAR framework. We found that including slope and curvature factors leads to significant forecast improvements over the HAR benchmark at a range of forecast horizons, compared with the standard HAR model and HAR model with VIX as IV information set.  相似文献   

5.
The existing contradictory findings on the contribution of trading volume to volatility forecasting prompt us to seek new solutions to test the sequential information arrival hypothesis (SIAH). Departing from other empirical analyses that mainly focus on sophisticated testing methods, this research offers new insights into the volume-volatility nexus by decomposing and reconstructing the trading activity into short-run components that typically represent irregular information flow and long-run components that denote extreme information flow in the stock market. We are the first to attempt at incorporating an improved empirical mode decomposition (EMD) method to investigate the volatility forecasting ability of trading volume along with the Heterogeneous Autoregressive (HAR) model. Previous trading volume is used to obtain the decompositions to forecast the future volatility to ensure an ex ante forecast, and both the decomposition and forecasting processes are carried out by the rolling window scheme. Rather than trading volume by itself, the results show that the reconstructed components are also able to significantly improve out-of-sample realized volatility (RV) forecasts. This finding is robust both in one-step ahead and multiple-step ahead forecasting horizons under different estimation windows. We thus fill the gap in studies by (1) extending the literature on the volume-volatility linkage to EMD-HAR analysis and (2) providing a clear view on how trading volume helps improve RV forecasting accuracy.  相似文献   

6.
In this study we propose several new variables, such as continuous realized semi‐variance and signed jump variations including jump tests, and construct a new heterogeneous autoregressive model for realized volatility models to investigate the impacts that those new variables have on forecasting oil price volatility. In‐sample results indicate that past negative returns have greater effects on future volatility than that of positive returns, and our new signed jump variations have a significantly negative influence on the future volatility. Out‐of‐sample empirical results with several robust checks demonstrate that our proposed models can not only obtain better performance in forecasting volatility but also garner larger economic values than can the existing models discussed in this paper.  相似文献   

7.
This paper evaluates the performance of conditional variance models using high‐frequency data of the National Stock Index (S&P CNX NIFTY) and attempts to determine the optimal sampling frequency for the best daily volatility forecast. A linear combination of the realized volatilities calculated at two different frequencies is used as benchmark to evaluate the volatility forecasting ability of the conditional variance models (GARCH (1, 1)) at different sampling frequencies. From the analysis, it is found that sampling at 30 minutes gives the best forecast for daily volatility. The forecasting ability of these models is deteriorated, however, by the non‐normal property of mean adjusted returns, which is an assumption in conditional variance models. Nevertheless, the optimum frequency remained the same even in the case of different models (EGARCH and PARCH) and different error distribution (generalized error distribution, GED) where the error is reduced to a certain extent by incorporating the asymmetric effect on volatility. Our analysis also suggests that GARCH models with GED innovations or EGRACH and PARCH models would give better estimates of volatility with lower forecast error estimates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers the forecast accuracy of a wide range of volatility models, with particular emphasis on the use of power transformations. Where one‐period‐ahead forecasts are considered, the power autoregressive models are ranked first by a range of error metrics. Over longer forecast horizons, however, generalized autoregressive conditional heteroscedasticity models are preferred. A value‐at‐risk‐based forecast assessment indicates that, while the forecast errors are independent, they are not independent and identically distributed, although this latter result is sensitive to the choice of forecast horizon. Our results are robust across a number of different asset markets. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper compares daily exchange rate value at risk estimates derived from econometric models with those implied by the prices of traded options. Univariate and multivariate GARCH models are employed in parallel with the simple historical and exponentially weighted moving average methods. Overall, we find that during periods of stability, the implied model tends to overestimate value at risk, hence over‐allocating capital. However, during turbulent periods, it is less responsive than the GARCH‐type models, resulting in an under‐allocation of capital and a greater number of failures. Hence our main conclusion, which has important implications for risk management, is that market expectations of future volatility and correlation, as determined from the prices of traded options, may not be optimal tools for determining value at risk. Therefore, alternative models for estimating volatility should be sought. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Standard statistical loss functions, such as mean‐squared error, are commonly used for evaluating financial volatility forecasts. In this paper, an alternative evaluation framework, based on probability scoring rules that can be more closely tailored to a forecast user's decision problem, is proposed. According to the decision at hand, the user specifies the economic events to be forecast, the scoring rule with which to evaluate these probability forecasts, and the subsets of the forecasts of particular interest. The volatility forecasts from a model are then transformed into probability forecasts of the relevant events and evaluated using the selected scoring rule and calibration tests. An empirical example using exchange rate data illustrates the framework and confirms that the choice of loss function directly affects the forecast evaluation results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
This paper examines the benefits to forecasters of decomposing close-to-close return volatility into close-to-open (nighttime) and open-to-close (daytime) return volatility. Specifically, we consider whether close-to-close volatility forecasts based on the former type of (temporally aggregated) data are less accurate than corresponding forecasts based on the latter (temporally disaggregated) data. Results obtained from seven different US index futures markets reveal that significant increases in forecast accuracy are possible when using temporally disaggregated volatility data. This result is primarily driven by the fact that forecasts based on such data can be updated as more information becomes available (e.g., information flow from the preceding close-to-open/nighttime trading session). Finally, we demonstrate that the main findings of this paper are robust to the index futures market considered, the way in which return volatility is constructed, and the method used to assess forecast accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the performance of GARCH model and its modifications, using the rate of returns from the daily stock market indices of the Kuala Lumpur Stock Exchange (KLSE) including Composite Index, Tins Index, Plantations Index, Properties Index, and Finance Index. The models are stationary GARCH, unconstrained GARCH, non‐negative GARCH, GARCH‐M, exponential GARCH and integrated GARCH. The parameters of these models and variance processes are estimated jointly using the maximum likelihood method. The performance of the within‐sample estimation is diagnosed using several goodness‐of‐fit statistics. We observed that, among the models, even though exponential GARCH is not the best model in the goodness‐of‐fit statistics, it performs best in describing the often‐observed skewness in stock market indices and in out‐of‐sample (one‐step‐ahead) forecasting. The integrated GARCH, on the other hand, is the poorest model in both respects. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
We study intraday return volatility dynamics using a time‐varying components approach, and the method is applied to analyze IBM intraday returns. Empirical evidence indicates that with three additive components—a time‐varying mean of absolute returns and two cosine components with time‐varying amplitudes—together they capture very well the pronounced periodicity and persistence behaviors exhibited in the empirical autocorrelation pattern of IBM returns. We find that the long‐run volatility persistence is driven predominantly by daily level shifts in mean absolute returns. After adjusting for these intradaily components, the filtered returns behave much like a Gaussian noise, suggesting that the three‐components structure is adequately specified. Furthermore, a new volatility measure (TCV) can be constructed from these components. Results from extensive out‐of‐sample rolling forecast experiments suggest that TCV fares well in predicting future volatility against alternative methods, including GARCH model, realized volatility and realized absolute value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The availability of numerous modeling approaches for volatility forecasting leads to model uncertainty for both researchers and practitioners. A large number of studies provide evidence in favor of combination methods for forecasting a variety of financial variables, but most of them are implemented on returns forecasting and evaluate their performance based solely on statistical evaluation criteria. In this paper, we combine various volatility forecasts based on different combination schemes and evaluate their performance in forecasting the volatility of the S&P 500 index. We use an exhaustive variety of combination methods to forecast volatility, ranging from simple techniques to time-varying techniques based on the past performance of the single models and regression techniques. We then evaluate the forecasting performance of single and combination volatility forecasts based on both statistical and economic loss functions. The empirical analysis in this paper yields an important conclusion. Although combination forecasts based on more complex methods perform better than the simple combinations and single models, there is no dominant combination technique that outperforms the rest in both statistical and economic terms.  相似文献   

15.
The increase in oil price volatility in recent years has raised the importance of forecasting it accurately for valuing and hedging investments. The paper models and forecasts the crude oil exchange‐traded funds (ETF) volatility index, which has been used in the last years as an important alternative measure to track and analyze the volatility of future oil prices. Analysis of the oil volatility index suggests that it presents features similar to those of the daily market volatility index, such as long memory, which is modeled using well‐known heterogeneous autoregressive (HAR) specifications and new extensions that are based on net and scaled measures of oil price changes. The aim is to improve the forecasting performance of the traditional HAR models by including predictors that capture the impact of oil price changes on the economy. The performance of the new proposals and benchmarks is evaluated with the model confidence set (MCS) and the Generalized‐AutoContouR (G‐ACR) tests in terms of point forecasts and density forecasting, respectively. We find that including the leverage in the conditional mean or variance of the basic HAR model increases its predictive ability. Furthermore, when considering density forecasting, the best models are a conditional heteroskedastic HAR model that includes a scaled measure of oil price changes, and a HAR model with errors following an exponential generalized autoregressive conditional heteroskedasticity specification. In both cases, we consider a flexible distribution for the errors of the conditional heteroskedastic process.  相似文献   

16.
In this study, we explore the effect of cojumps within the agricultural futures market, and cojumps between the agricultural futures market and the stock market, on stock volatility forecasting. Also, we take into account large and small components of cojumps. We have several noteworthy findings. First, large jumps may lead to more substantial fluctuations and are more powerful than small jumps. The effect of cojumps and their decompositions on future volatility are mixed. Second, a model including large and small cojumps between the agricultural futures market and the stock market can achieve a higher forecasting accuracy, implying that large and small cojumps contain more useful predictive information than cojumps themselves. Third, our conclusions are robust based on various robustness tests such as the realized kernel, expanding forecasts, different forecasting windows, different jump tests, and different threshold values.  相似文献   

17.
Empirical experiments have shown that macroeconomic variables can affect the volatility of stock market. However, the frequencies of macroeconomic variables are low and different from the stock market volatility, and few literature considers the low-frequency macroeconomic variables as input indicators for deep learning models. In this paper, we forecast the stock market volatility incorporating low-frequency macroeconomic variables based on a hybrid model integrating the deep learning method with generalized autoregressive conditional heteroskedasticity and mixed data sampling (GARCH-MIDAS) model to process the mixing frequency data. This paper firstly takes macroeconomic variables as exogenous variables then uses the GARCH-MIDAS model to deal with the problem of different frequencies between the macroeconomic variables and stock market volatility and to forecast the short-term volatility and finally takes the predicted short-term volatility as the input indicator into machine learning and deep learning models to forecast the realized volatility of stock market. It is found that adding macroeconomic variables can significantly improve the forecasting ability in the comparison of the forecasting effects of the same model before and after adding the macroeconomic variables. Additionally, in the comparison of the forecasting effects among different models, it is also found that the forecasting effect of the deep learning model is the best, the machine learning model is worse, and the traditional econometric model is the worst.  相似文献   

18.
This paper uses Markov switching models to capture volatility dynamics in exchange rates and to evaluate their forecasting ability. We identify that increased volatilities in four euro‐based exchange rates are due to underlying structural changes. Also, we find that currencies are closely related to each other, especially in high‐volatility periods, where cross‐correlations increase significantly. Using Markov switching Monte Carlo approach we provide evidence in favour of Markov switching models, rejecting random walk hypothesis. Testing in‐sample and out‐of‐sample Markov trading rules based on Dueker and Neely (Journal of Banking and Finance, 2007) we find that using econometric methodology is able to forecast accurately exchange rate movements. When applied to the Euro/US dollar and the euro/British pound daily returns data, the model provides exceptional out‐of‐sample returns. However, when applied to the euro/Brazilian real and the euro/Mexican peso, the model loses power. Higher volatility exercised in the Latin American currencies seems to be a critical factor for this failure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses several questions surrounding volatility forecasting and its use in the estimation of optimal hedging ratios. Specifically: Are there economic gains by nesting time‐series econometric models (GARCH) and dynamic programming models (therefore forecasting volatility several periods out) in the estimation of hedging ratios whilst accounting for volatility in the futures bid–ask spread? Are the forecasted hedging ratios (and wealth generated) from the nested bid–ask model statistically and economically different than standard approaches? Are there times when a trader following a basic model that does not forecast outperforms a trader using the nested bid–ask model? On all counts the results are encouraging—a trader that accounts for the bid–ask spread and forecasts volatility several periods in the nested model will incur lower transactions costs and gain significantly when the market suddenly and abruptly turns. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
This article compares the forecast accuracy of different methods, namely prediction markets, tipsters and betting odds, and assesses the ability of prediction markets and tipsters to generate profits systematically in a betting market. We present the results of an empirical study that uses data from 678–837 games of three seasons of the German premier soccer league. Prediction markets and betting odds perform equally well in terms of forecasting accuracy, but both methods strongly outperform tipsters. A weighting‐based combination of the forecasts of these methods leads to a slightly higher forecast accuracy, whereas a rule‐based combination improves forecast accuracy substantially. However, none of the forecasts leads to systematic monetary gains in betting markets because of the high fees (25%) charged by the state‐owned bookmaker in Germany. Lower fees (e.g., approximately 12% or 0%) would provide systematic profits if punters exploited the information from prediction markets and bet only on a selected number of games. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号