首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
With the development of artificial intelligence, deep learning is widely used in the field of nonlinear time series forecasting. It is proved in practice that deep learning models have higher forecasting accuracy compared with traditional linear econometric models and machine learning models. With the purpose of further improving forecasting accuracy of financial time series, we propose the WT-FCD-MLGRU model, which is the combination of wavelet transform, filter cycle decomposition and multilag neural networks. Four major stock indices are chosen to test the forecasting performance among traditional econometric model, machine learning model and deep learning models. According to the result of empirical analysis, deep learning models perform better than traditional econometric model such as autoregressive integrated moving average and improved machine learning model SVR. Besides, our proposed model has the minimum forecasting error in stock index prediction.  相似文献   

2.
Improving the prediction accuracy of agricultural product futures prices is important for investors, agricultural producers, and policymakers. This is to evade risks and enable government departments to formulate appropriate agricultural regulations and policies. This study employs the ensemble empirical mode decomposition (EEMD) technique to decompose six different categories of agricultural futures prices. Subsequently, three models—support vector machine (SVM), neural network (NN), and autoregressive integrated moving average (ARIMA)—are used to predict the decomposition components. The final hybrid model is then constructed by comparing the prediction performance of the decomposition components. The predicting performance of the combination model is then compared with the benchmark individual models: SVM, NN, and ARIMA. Our main interest in this study is on short-term forecasting, and thus we only consider 1-day and 3-day forecast horizons. The results indicate that the prediction performance of the EEMD combined model is better than that of individual models, especially for the 3-day forecasting horizon. The study also concluded that the machine learning methods outperform the statistical methods in forecasting high-frequency volatile components. However, there is no obvious difference between individual models in predicting low-frequency components.  相似文献   

3.
Dynamic model averaging (DMA) is used extensively for the purpose of economic forecasting. This study extends the framework of DMA by introducing adaptive learning from model space. In the conventional DMA framework all models are estimated independently and hence the information of the other models is left unexploited. In order to exploit the information in the estimation of the individual time‐varying parameter models, this paper proposes not only to average over the forecasts but, in addition, also to dynamically average over the time‐varying parameters. This is done by approximating the mixture of individual posteriors with a single posterior, which is then used in the upcoming period as the prior for each of the individual models. The relevance of this extension is illustrated in three empirical examples involving forecasting US inflation, US consumption expenditures, and forecasting of five major US exchange rate returns. In all applications adaptive learning from model space delivers improvements in out‐of‐sample forecasting performance.  相似文献   

4.
Conventional wisdom holds that restrictions on low‐frequency dynamics among cointegrated variables should provide more accurate short‐ to medium‐term forecasts than univariate techniques that contain no such information; even though, on standard accuracy measures, the information may not improve long‐term forecasting. But inconclusive empirical evidence is complicated by confusion about an appropriate accuracy criterion and the role of integration and cointegration in forecasting accuracy. We evaluate the short‐ and medium‐term forecasting accuracy of univariate Box–Jenkins type ARIMA techniques that imply only integration against multivariate cointegration models that contain both integration and cointegration for a system of five cointegrated Asian exchange rate time series. We use a rolling‐window technique to make multiple out of sample forecasts from one to forty steps ahead. Relative forecasting accuracy for individual exchange rates appears to be sensitive to the behaviour of the exchange rate series and the forecast horizon length. Over short horizons, ARIMA model forecasts are more accurate for series with moving‐average terms of order >1. ECMs perform better over medium‐term time horizons for series with no moving average terms. The results suggest a need to distinguish between ‘sequential’ and ‘synchronous’ forecasting ability in such comparisons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Empirical experiments have shown that macroeconomic variables can affect the volatility of stock market. However, the frequencies of macroeconomic variables are low and different from the stock market volatility, and few literature considers the low-frequency macroeconomic variables as input indicators for deep learning models. In this paper, we forecast the stock market volatility incorporating low-frequency macroeconomic variables based on a hybrid model integrating the deep learning method with generalized autoregressive conditional heteroskedasticity and mixed data sampling (GARCH-MIDAS) model to process the mixing frequency data. This paper firstly takes macroeconomic variables as exogenous variables then uses the GARCH-MIDAS model to deal with the problem of different frequencies between the macroeconomic variables and stock market volatility and to forecast the short-term volatility and finally takes the predicted short-term volatility as the input indicator into machine learning and deep learning models to forecast the realized volatility of stock market. It is found that adding macroeconomic variables can significantly improve the forecasting ability in the comparison of the forecasting effects of the same model before and after adding the macroeconomic variables. Additionally, in the comparison of the forecasting effects among different models, it is also found that the forecasting effect of the deep learning model is the best, the machine learning model is worse, and the traditional econometric model is the worst.  相似文献   

6.
This paper reviews the approach to forecasting based on the construction of ARIMA time series models. Recent developments in this area are surveyed, and the approach is related to other forecasting methodologies.  相似文献   

7.
The main focus of this paper is to model the daily series of banknotes in circulation. The series of banknotes in circulation displays very marked seasonal patterns. To the best of our knowledge the empirical performance of two competing approaches to model seasonality in daily time series, namely the ARIMA‐based approach and the Structural Time Series approach, has never been put to the test. The application presented in this paper provides valid intuition on the merits of each approach. The forecasting performance of the models is also assessed in the context of their impact on the liquidity management of the Eurosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Artificial neural network (ANN) combined with signal decomposing methods is effective for long‐term streamflow time series forecasting. ANN is a kind of machine learning method utilized widely for streamflow time series, and which performs well in forecasting nonstationary time series without the need of physical analysis for complex and dynamic hydrological processes. Most studies take multiple factors determining the streamflow as inputs such as rainfall. In this study, a long‐term streamflow forecasting model depending only on the historical streamflow data is proposed. Various preprocessing techniques, including empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and discrete wavelet transform (DWT), are first used to decompose the streamflow time series into simple components with different timescale characteristics, and the relation between these components and the original streamflow at the next time step is analyzed by ANN. Hybrid models EMD‐ANN, EEMD‐ANN and DWT‐ANN are developed in this study for long‐term daily streamflow forecasting, and performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and Nash–Sutcliffe efficiency (NSE) indicate that the proposed EEMD‐ANN method performs better than EMD‐ANN and DWT‐ANN models, especially in high flow forecasting.  相似文献   

9.
We utilize mixed‐frequency factor‐MIDAS models for the purpose of carrying out backcasting, nowcasting, and forecasting experiments using real‐time data. We also introduce a new real‐time Korean GDP dataset, which is the focus of our experiments. The methodology that we utilize involves first estimating common latent factors (i.e., diffusion indices) from 190 monthly macroeconomic and financial series using various estimation strategies. These factors are then included, along with standard variables measured at multiple different frequencies, in various factor‐MIDAS prediction models. Our key empirical findings as follows. (i) When using real‐time data, factor‐MIDAS prediction models outperform various linear benchmark models. Interestingly, the “MSFE‐best” MIDAS models contain no autoregressive (AR) lag terms when backcasting and nowcasting. AR terms only begin to play a role in “true” forecasting contexts. (ii) Models that utilize only one or two factors are “MSFE‐best” at all forecasting horizons, but not at any backcasting and nowcasting horizons. In these latter contexts, much more heavily parametrized models with many factors are preferred. (iii) Real‐time data are crucial for forecasting Korean gross domestic product, and the use of “first available” versus “most recent” data “strongly” affects model selection and performance. (iv) Recursively estimated models are almost always “MSFE‐best,” and models estimated using autoregressive interpolation dominate those estimated using other interpolation methods. (v) Factors estimated using recursive principal component estimation methods have more predictive content than those estimated using a variety of other (more sophisticated) approaches. This result is particularly prevalent for our “MSFE‐best” factor‐MIDAS models, across virtually all forecast horizons, estimation schemes, and data vintages that are analyzed.  相似文献   

10.
A reliable and efficient forecasting system can be used to warn the general public against the increasing PM2.5 concentration. This paper proposes a novel AdaBoost-ensemble technique based on a hybrid data preprocessing-analysis strategy, with the following contributions: (i) a new decomposition strategy is proposed based on the hybrid data preprocessing-analysis strategy, which combines the merits of two popular decomposition algorithms and has been proven to be a promising decomposition strategy; (ii) the long short-term memory (LSTM), as a powerful deep learning forecasting algorithm, is applied to individually forecast the decomposed components, which can effectively capture the long-short patterns of complex time series; and (iii) a novel AdaBoost-LSTM ensemble technique is then developed to integrate the individual forecasting results into the final forecasting results, which provides significant improvement to the forecasting performance. To evaluate the proposed model, a comprehensive and scientific assessment system with several evaluation criteria, comparison models, and experiments is designed. The experimental results indicate that our developed hybrid model considerably surpasses the compared models in terms of forecasting precision and statistical testing and that its excellent forecasting performance can guide in developing effective control measures to decrease environmental contamination and prevent the health issues caused by a high PM2.5 concentration.  相似文献   

11.
This paper investigates the forecasting ability of unobserved component models, when compared with the standard ARIMA univariate approach. A forecasting exercise is carried out with each method, using monthly time series of automobile sales in Spain. The accuracy of the different methods is assessed by comparing several measures of forecasting performance based on the out-of-sample predictions for various horizons, as well as different assumptions on the models’ parameters. Overall there seems little to choose between the methods in forecasting performance terms but the recursive unobserved component models provide greater flexibility for adaptive applications. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
A large number of statistical forecasting procedures for univariate time series have been proposed in the literature. These range from simple methods, such as the exponentially weighted moving average, to more complex procedures such as Box–Jenkins ARIMA modelling and Harrison–Stevens Bayesian forecasting. This paper sets out to show the relationship between these various procedures by adopting a framework in which a time series model is viewed in terms of trend, seasonal and irregular components. The framework is then extended to cover models with explanatory variables. From the technical point of view the Kalman filter plays an important role in allowing an integrated treatment of these topics.  相似文献   

13.
Compared with point forecasting, interval forecasting is believed to be more effective and helpful in decision making, as it provides more information about the data generation process. Based on the well-established “linear and nonlinear” modeling framework, a hybrid model is proposed by coupling the vector error correction model (VECM) with artificial intelligence models which consider the cointegration relationship between the lower and upper bounds (Coin-AIs). VECM is first employed to fit the original time series with the residual error series modeled by Coin-AIs. Using pork price as a research sample, the empirical results statistically confirm the superiority of the proposed VECM-CoinAIs over other competing models, which include six single models and six hybrid models. This result suggests that considering the cointegration relationship is a workable direction for improving the forecast performance of the interval-valued time series. Moreover, with a reasonable data transformation process, interval forecasting is proven to be more accurate than point forecasting.  相似文献   

14.
This paper constructs a financial distress prediction model that includes not only traditional financial variables, but also several important corporate governance variables. Using data from Taiwan, the empirical results show that the best in-sample and out-of-sample prediction models should combine the financial variables with the corporate governance variables. Moreover, the prediction accuracy is higher for the models using dynamic distress threshold values than those with tradition threshold values. Most financial ratios, except for the debt ratio, are higher in financially sound companies than in financial distressed ones. With regard to the corporate governance variables, we find that the CEO/Chairman duality may not result in the outbreak of financial distress, but higher equity pledge ratios of managers (shareholding ratios by board members and insiders) positively (negatively) correlate with financial distress.  相似文献   

15.
Delay prediction is an important issue associated with train timetabling and dispatching. Based on real-world operation records, accurate forecasting of delays is of immense significance in train operation and decisions of dispatchers. In this study, we established a model that illustrates the interaction between train delays and their affecting factors via train describer records on a Dutch railway line. Based on the main factors that affect train delay and the time series trend, we determined the independent and dependent variables. A long short-term memory (LSTM) prediction model in which the actual delay time corresponded to the dependent variable was established via Python. Finally, the prediction accuracy of the random forest model and artificial neural network model was compared. The results indicated that the LSTM model outperformed the other two models.  相似文献   

16.
Recent studies have shown that composite forecasting produces superior forecasts when compared to individual forecasts. This paper extends the existing literature by employing linear constraints and robust regression techniques in composite model building. Security analysts forecasts may be improved when combined with time series forecasts for a diversified sample of 261 firms with a 1980-1982 post-sample estimation period. The mean square error of analyst forecasts may be reduced by combining analyst and univariate time series model forecasts in constrained and unconstrained ordinary least squares regression models. These reductions are very interesting when one finds that the univariate time series model forecasts do not substantially deviate from those produced by ARIMA (0,1,1) processes. Moreover, security analysts' forecast errors may be significantly reduced when constrained and unconstrained robust regression analyses are employed.  相似文献   

17.
Four options for modeling and forecasting time series data containing increasing seasonal variation are discussed, including data transformations, double seasonal difference models and two kinds of transfer function-type ARIMA models employing seasonal dummy variables. An explanation is given for the typical ARIMA model identification analysis failing to identify double seasonal difference models for this kind of data. A logical process of selecting one option for a particular case is outlined, focusing on issues of linear versus non-linear increasing seasonal variation, and the level of stochastic versus deterministic behavior in a time series. Example models for the various options are presented for six time series, with point forecast and interval forecast comparisons. Interval forecasts from data-transformation models are found to generally be too wide and sometimes illogical in the dependence of their width on the point forecast level. Suspicion that maximum likelihood estimation of ARIMA models leads to excessive indications of unit roots in seasonal moving-average operators is reported.  相似文献   

18.
This paper compares the predictive ability of ARIMA models in forecasting sales revenue. Comparisons were made at both industry and firm levels. With respect to the form of the ARIMA model, a parsimonious model of the form (0, 1, 1) (0, 1, 1) was identified most frequently for firms and industries. This model was identified previously by Griffin and Watts for the earnings series, and by Moriarty and Adams for the sales series. As a parsimonious model, its predictive accuracy was quite good. However, predictive accuracy was also found to be a function of the industry. Out of the eleven industry classifications, ‘metals’ had the lowest predictive accuracy using both firmspecific and industry-specific ARIMA models.  相似文献   

19.
The availability of numerous modeling approaches for volatility forecasting leads to model uncertainty for both researchers and practitioners. A large number of studies provide evidence in favor of combination methods for forecasting a variety of financial variables, but most of them are implemented on returns forecasting and evaluate their performance based solely on statistical evaluation criteria. In this paper, we combine various volatility forecasts based on different combination schemes and evaluate their performance in forecasting the volatility of the S&P 500 index. We use an exhaustive variety of combination methods to forecast volatility, ranging from simple techniques to time-varying techniques based on the past performance of the single models and regression techniques. We then evaluate the forecasting performance of single and combination volatility forecasts based on both statistical and economic loss functions. The empirical analysis in this paper yields an important conclusion. Although combination forecasts based on more complex methods perform better than the simple combinations and single models, there is no dominant combination technique that outperforms the rest in both statistical and economic terms.  相似文献   

20.
The purpose of this paper is to apply the Box–Jenkins methodology to ARIMA models and determine the reasons why in empirical tests it is found that the post-sample forecasting the accuracy of such models is generally worse than much simpler time series methods. The paper concludes that the major problem is the way of making the series stationary in its mean (i.e. the method of differencing) that has been proposed by Box and Jenkins. If alternative approaches are utilized to remove and extrapolate the trend in the data, ARMA models outperform the models selected through Box–Jenkins methodology. In addition, it is shown that using ARMA models to seasonally adjusted data slightly improves post-sample accuracies while simplifying the use of ARMA models. It is also confirmed that transformations slightly improve post-sample forecasting accuracy, particularly for long forecasting horizons. Finally, it is demonstrated that AR(1), AR(2) and ARMA(1,1) models can produce more accurate post-sample forecasts than those found through the application of Box–Jenkins methodology.© 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号