共查询到20条相似文献,搜索用时 0 毫秒
1.
Paul Newbold 《Journal of forecasting》1983,2(1):23-35
This paper reviews the approach to forecasting based on the construction of ARIMA time series models. Recent developments in this area are surveyed, and the approach is related to other forecasting methodologies. 相似文献
2.
Tucker McElroy 《Journal of forecasting》2011,30(7):597-621
Two important problems in the X‐11 seasonal adjustment methodology are the construction of standard errors and the handling of the boundaries. We adapt the ‘implied model approach’ of Kaiser and Maravall to achieve both objectives in a nonparametric fashion. The frequency response function of an X‐11 linear filter is used, together with the periodogram of the differenced data, to define spectral density estimates for signal and noise. These spectra are then used to define a matrix smoother, which in turn generates an estimate of the signal that is linear in the data. Estimates of the signal are provided at all time points in the sample, and the associated time‐varying signal extraction mean squared errors are a by‐product of the matrix smoother theory. After explaining our method, it is applied to popular nonparametric filters such as the Hodrick–Prescott (HP), the Henderson trend, and ideal low‐pass and band‐pass filters, as well as X‐11 seasonal adjustment, trend, and irregular filters. Finally, we illustrate the method on several time series and provide comparisons with X‐12‐ARIMA seasonal adjustments. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
In this paper we develop a semi‐parametric approach to model nonlinear relationships in serially correlated data. To illustrate the usefulness of this approach, we apply it to a set of hourly electricity load data. This approach takes into consideration the effect of temperature combined with those of time‐of‐day and type‐of‐day via nonparametric estimation. In addition, an ARIMA model is used to model the serial correlation in the data. An iterative backfitting algorithm is used to estimate the model. Post‐sample forecasting performance is evaluated and comparative results are presented. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
This paper first shows that survey‐based expectations (SBE) outperform standard time series models in US quarterly inflation out‐of‐sample prediction and that the term structure of survey‐based inflation forecasts has predictive power over the path of future inflation changes. It then proposes some empirical explanations for the forecasting success of survey‐based inflation expectations. We show that SBE pool a large amount of heterogeneous information on inflation expectations and react more flexibly and accurately to macro conditions both contemporaneously and dynamically. We illustrate the flexibility of SBE forecasts in the context of the 2008 financial crisis. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
5.
利用小波诊断技术对广西钦州1950~2005年水稻产量和播种面积进行了多时间尺度分析,并利用基于小波的ARIMA模型进行了预测。分析结果表明:56年来,钦州水稻总产量和单位产量波动具有明显的3a、7a和25a特征时间尺度,播种面积7a特征时间尺度主要受农村土地制度改革影响。基于小波的ARIMA模型在水稻产量、播种面积预测方面精度很高,预测误差与气象灾害和土地政策变化有关。利用基于小波的水稻产量多时间尺度分析与预测方法,可以辅助水稻产量增减周期的分析以及对未来趋势的判断,对于结合供求关系合理调整种植面积,促进农业可持续发展提供帮助。 相似文献
6.
Financial data series are often described as exhibiting two non‐standard time series features. First, variance often changes over time, with alternating phases of high and low volatility. Such behaviour is well captured by ARCH models. Second, long memory may cause a slower decay of the autocorrelation function than would be implied by ARMA models. Fractionally integrated models have been offered as explanations. Recently, the ARFIMA–ARCH model class has been suggested as a way of coping with both phenomena simultaneously. For estimation we implement the bias correction of Cox and Reid ( 1987 ). For daily data on the Swiss 1‐month Euromarket interest rate during the period 1986–1989, the ARFIMA–ARCH (5,d,2/4) model with non‐integer d is selected by AIC. Model‐based out‐of‐sample forecasts for the mean are better than predictions based on conditionally homoscedastic white noise only for longer horizons (τ > 40). Regarding volatility forecasts, however, the selected ARFIMA–ARCH models dominate. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
7.
Yingwen Tan;Zhensi Tan;Yinfen Tang;Zhiyuan Zhang; 《Journal of forecasting》2024,43(8):3009-3034
Widely used volatility forecasting methods are usually based on low-frequency time series models. Although some of them employ high-frequency observations, these intraday data are often summarized into low-frequency point statistics, for example, daily realized measures, before being incorporated into a forecasting model. This paper contributes to the volatility forecasting literature by instead predicting the next-period intraday volatility curve via a functional time series forecasting approach. Asymptotic theory related to the estimation of latent volatility curves via functional principal analysis is formally established, laying a solid theoretical foundation of the proposed forecasting method. In contrast with nonfunctional methods, the proposed functional approach fully exploits the rich intraday information and hence leads to more accurate volatility forecasts. This is confirmed by extensive comparisons between the proposed method and those widely used nonfunctional methods in both Monte Carlo simulations and an empirical study on a number of stocks and equity indices from the Chinese market. 相似文献
8.
Tucker McElroy 《Journal of forecasting》2015,34(4):315-336
Although both direct multi‐step‐ahead forecasting and iterated one‐step‐ahead forecasting are two popular methods for predicting future values of a time series, it is not clear that the direct method is superior in practice, even though from a theoretical perspective it has lower mean squared error (MSE). A given model can be fitted according to either a multi‐step or a one‐step forecast error criterion, and we show here that discrepancies in performance between direct and iterative forecasting arise chiefly from the method of fitting, and is dictated by the nuances of the model's misspecification. We derive new formulas for quantifying iterative forecast MSE, and present a new approach for assessing asymptotic forecast MSE. Finally, the direct and iterative methods are compared on a retail series, which illustrates the strengths and weaknesses of each approach. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
In this paper we discuss procedures for overcoming some of the problems involved in fitting autoregressive integrated moving average forecasting models to time series data, when the possibility of incorporating an instantaneous power transformation of the data into the analysis is contemplated. The procedures are illustrated using series of quarterly observations on corporate earnings per share. 相似文献
10.
This paper investigates the forecasting ability of unobserved component models, when compared with the standard ARIMA univariate approach. A forecasting exercise is carried out with each method, using monthly time series of automobile sales in Spain. The accuracy of the different methods is assessed by comparing several measures of forecasting performance based on the out-of-sample predictions for various horizons, as well as different assumptions on the models’ parameters. Overall there seems little to choose between the methods in forecasting performance terms but the recursive unobserved component models provide greater flexibility for adaptive applications. © 1997 by John Wiley & Sons, Ltd. 相似文献
11.
Michel M. Dacorogna Cindy L. Gauvreau Ulrich A. Müller Richard B. Olsen Olivier V. Pictet 《Journal of forecasting》1996,15(3):203-227
A forecasting model based on high-frequency market makers quotes of financial instruments is presented. The statistical behaviour of these time series leads to discussion of the appropriate time scale for forecasting. We introduce variable time scales in a general way and define the new concept of intrinsic time. The latter reflects better the actual trading activity. Changing time scale means forecasting in two steps, first an intrinsic time forecast against physical time, then a price forecast against intrinsic time. The forecasting model consists, for both steps, of a linear combination of non-linear price-based indicators. The indicator weights are continuously re-optimized through a modified linear regression on a moving sample of past prices. The out-of-sample performance of this algorithm is reported on a set of important FX rates and interest rates over many years. It is remarkably consistent. Results for short horizons as well as techniques to measure this performance are discussed. 相似文献
12.
This paper presents gamma stochastic volatility models and investigates its distributional and time series properties. The parameter estimators obtained by the method of moments are shown analytically to be consistent and asymptotically normal. The simulation results indicate that the estimators behave well. The in‐sample analysis shows that return models with gamma autoregressive stochastic volatility processes capture the leptokurtic nature of return distributions and the slowly decaying autocorrelation functions of squared stock index returns for the USA and UK. In comparison with GARCH and EGARCH models, the gamma autoregressive model picks up the persistence in volatility for the US and UK index returns but not the volatility persistence for the Canadian and Japanese index returns. The out‐of‐sample analysis indicates that the gamma autoregressive model has a superior volatility forecasting performance compared to GARCH and EGARCH models. Copyright © 2006 John Wiley _ Sons, Ltd. 相似文献
13.
Tolga Cenesizoglu Nicolas Papageorgiou Jonathan J. Reeves Haifeng Wu 《Journal of forecasting》2019,38(2):136-153
This paper demonstrates that the forecasted capital asset pricing model (CAPM) beta of momentum portfolios explains a large portion of the return, ranging from 40% to 60% for stock‐level momentum, and from 30% to 50% for industry‐level momentum. Beta forecasts are from a realized beta estimator using daily returns over the prior year. Periods such as 1969–1989 have been found in earlier studies to contain abnormal profits from momentum trading; however, we show that these were spuriously generated by measurement error in systematic risk. These results cast further doubt on the ability of standard momentum trading strategies to generate abnormal profits. 相似文献
14.
Daumantas Bloznelis 《Journal of forecasting》2018,37(2):151-169
This study establishes a benchmark for short‐term salmon price forecasting. The weekly spot price of Norwegian farmed Atlantic salmon is predicted 1–5 weeks ahead using data from 2007 to 2014. Sixteen alternative forecasting methods are considered, ranging from classical time series models to customized machine learning techniques to salmon futures prices. The best predictions are delivered by k‐nearest neighbors method for 1 week ahead; vector error correction model estimated using elastic net regularization for 2 and 3 weeks ahead; and futures prices for 4 and 5 weeks ahead. While the nominal gains in forecast accuracy over a naïve benchmark are small, the economic value of the forecasts is considerable. Using a simple trading strategy for timing the sales based on price forecasts could increase the net profit of a salmon farmer by around 7%. 相似文献
15.
Emanuel Parzen 《Journal of forecasting》1982,1(1):67-82
Methods of time series forecasting are proposed which can be applied automatically. However, they are not rote formulae, since they are based on a flexible philosophy which can provide several models for consideration. In addition it provides diverse diagnostics for qualitatively and quantitatively estimating how well one can forecast a series. The models considered are called ARARMA models (or ARAR models) because the model fitted to a long memory time series (t) is based on sophisticated time series analysis of AR (or ARMA) schemes (short memory models) fitted to residuals Y(t) obtained by parsimonious‘best lag’non-stationary autoregression. Both long range and short range forecasts are provided by an ARARMA model Section 1 explains the philosophy of our approach to time series model identification. Sections 2 and 3 attempt to relate our approach to some standard approaches to forecasting; exponential smoothing methods are developed from the point of view of prediction theory (section 2) and extended (section 3). ARARMA models are introduced (section 4). Methods of ARARMA model fitting are outlined (sections 5,6). Since‘the proof of the pudding is in the eating’, the methods proposed are illustrated (section 7) using the classic example of international airline passengers. 相似文献
16.
The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series. 相似文献
17.
S. C. Hillmer 《Journal of forecasting》1982,1(4):385-395
Some levels of economic activity change over the days of the week. Also, the composition of the calendar changes over the years so that a particular month contains a different configuration of days of the week each year. The effects of the changing composition of the calendar upon a monthly time series is called trading day variation. This paper discusses one way to model trading day variation in monthly time series and how this model can be used to obtain improved forecasts over univariate ARIMA models. The ideas are illustrated on an actual data set. 相似文献
18.
Hill and Woodworth (1980) proposed an algorithm suitable for identifying Box–Jenkins models automatically without reliance on the investigator. This paper first reviews the method. It is then used on the 111 series analysed by Anderson in the Makridakis forecasting competition. The results show that the automatic method of Hill and Woodworth is comparable in terms of accuracy to the full Box–Jenkins identification procedure. 相似文献
19.
A predictability index was defined as the ratio of the variance of the optimal prediction to the variance of the original time series by Granger and Anderson (1976) and Bhansali (1989). A new simplified algorithm for estimating the predictability index is introduced and the new estimator is shown to be a simple and effective tool in applications of predictability ranking and as an aid in the preliminary analysis of time series. The relationship between the predictability index and the position of the poles and lag p of a time series which can be modelled as an AR(p) model are also investigated. The effectiveness of the algorithm is demonstrated using numerical examples including an application to stock prices. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
20.
This paper investigates whether and to what extent multiple encompassing tests may help determine weights for forecast averaging in a standard vector autoregressive setting. To this end we consider a new test‐based procedure, which assigns non‐zero weights to candidate models that add information not covered by other models. The potential benefits of this procedure are explored in extensive Monte Carlo simulations using realistic designs that are adapted to UK and to French macroeconomic data, to which trivariate vector autoregressions (VAR) are fitted. Thus simulations rely on potential data‐generating mechanisms for macroeconomic data rather than on simple but artificial designs. We run two types of forecast ‘competitions’. In the first one, one of the model classes is the trivariate VAR, such that it contains the generating mechanism. In the second specification, none of the competing models contains the true structure. The simulation results show that the performance of test‐based averaging is comparable to uniform weighting of individual models. In one of our role model economies, test‐based averaging achieves advantages in small samples. In larger samples, pure prediction models outperform forecast averages. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献