共查询到20条相似文献,搜索用时 0 毫秒
1.
Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia 总被引:1,自引:0,他引:1
Yan XJ Xu J Gu ZH Pan CM Lu G Shen Y Shi JY Zhu YM Tang L Zhang XW Liang WX Mi JQ Song HD Li KQ Chen Z Chen SJ 《Nature genetics》2011,43(4):309-315
Abnormal epigenetic regulation has been implicated in oncogenesis. We report here the identification of somatic mutations by exome sequencing in acute monocytic leukemia, the M5 subtype of acute myeloid leukemia (AML-M5). We discovered mutations in DNMT3A (encoding DNA methyltransferase 3A) in 23 of 112 (20.5%) cases. The DNMT3A mutants showed reduced enzymatic activity or aberrant affinity to histone H3 in vitro. Notably, there were alterations of DNA methylation patterns and/or gene expression profiles (such as HOXB genes) in samples with DNMT3A mutations as compared with those without such changes. Leukemias with DNMT3A mutations constituted a group of poor prognosis with elderly disease onset and of promonocytic as well as monocytic predominance among AML-M5 individuals. Screening other leukemia subtypes showed Arg882 alterations in 13.6% of acute myelomonocytic leukemia (AML-M4) cases. Our work suggests a contribution of aberrant DNA methyltransferase activity to the pathogenesis of acute monocytic leukemia and provides a useful new biomarker for relevant cases. 相似文献
2.
Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans 总被引:18,自引:0,他引:18
Robertson SP Twigg SR Sutherland-Smith AJ Biancalana V Gorlin RJ Horn D Kenwrick SJ Kim CA Morava E Newbury-Ecob R Orstavik KH Quarrell OW Schwartz CE Shears DJ Suri M Kendrick-Jones J Wilkie AO;OPD-spectrum Disorders Clinical Collaborative Group 《Nature genetics》2003,33(4):487-491
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development. 相似文献
3.
4.
Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer 总被引:7,自引:0,他引:7
Huusko P Ponciano-Jackson D Wolf M Kiefer JA Azorsa DO Tuzmen S Weaver D Robbins C Moses T Allinen M Hautaniemi S Chen Y Elkahloun A Basik M Bova GS Bubendorf L Lugli A Sauter G Schleutker J Ozcelik H Elowe S Pawson T Trent JM Carpten JD Kallioniemi OP Mousses S 《Nature genetics》2004,36(9):979-983
The identification of tumor-suppressor genes in solid tumors by classical cancer genetics methods is difficult and slow. We combined nonsense-mediated RNA decay microarrays and array-based comparative genomic hybridization for the genome-wide identification of genes with biallelic inactivation involving nonsense mutations and loss of the wild-type allele. This approach enabled us to identify previously unknown mutations in the receptor tyrosine kinase gene EPHB2. The DU 145 prostate cancer cell line, originating from a brain metastasis, carries a truncating mutation of EPHB2 and a deletion of the remaining allele. Additional frameshift, splice site, missense and nonsense mutations are present in clinical prostate cancer samples. Transfection of DU 145 cells, which lack functional EphB2, with wild-type EPHB2 suppresses clonogenic growth. Taken together with studies indicating that EphB2 may have an essential role in cell migration and maintenance of normal tissue architecture, our findings suggest that mutational inactivation of EPHB2 may be important in the progression and metastasis of prostate cancer. 相似文献
5.
6.
Zang ZJ Cutcutache I Poon SL Zhang SL McPherson JR Tao J Rajasegaran V Heng HL Deng N Gan A Lim KH Ong CK Huang D Chin SY Tan IB Ng CC Yu W Wu Y Lee M Wu J Poh D Wan WK Rha SY So J Salto-Tellez M Yeoh KG Wong WK Zhu YJ Futreal PA Pang B Ruan Y Hillmer AM Bertrand D Nagarajan N Rozen S Teh BT Tan P 《Nature genetics》2012,44(5):570-574
Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers. 相似文献
7.
Ross DT Scherf U Eisen MB Perou CM Rees C Spellman P Iyer V Jeffrey SS Van de Rijn M Waltham M Pergamenschikov A Lee JC Lashkari D Shalon D Myers TG Weinstein JN Botstein D Brown PO 《Nature genetics》2000,24(3):227-235
We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo. 相似文献
8.
Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles 总被引:21,自引:0,他引:21
Seal S Thompson D Renwick A Elliott A Kelly P Barfoot R Chagtai T Jayatilake H Ahmed M Spanova K North B McGuffog L Evans DG Eccles D;Breast Cancer Susceptibility Collaboration 《Nature genetics》2006,38(11):1239-1241
We identified constitutional truncating mutations of the BRCA1-interacting helicase BRIP1 in 9/1,212 individuals with breast cancer from BRCA1/BRCA2 mutation-negative families but in only 2/2,081 controls (P = 0.0030), and we estimate that BRIP1 mutations confer a relative risk of breast cancer of 2.0 (95% confidence interval = 1.2-3.2, P = 0.012). Biallelic BRIP1 mutations were recently shown to cause Fanconi anemia complementation group J. Thus, inactivating truncating mutations of BRIP1, similar to those in BRCA2, cause Fanconi anemia in biallelic carriers and confer susceptibility to breast cancer in monoallelic carriers. 相似文献
9.
Guichard C Amaddeo G Imbeaud S Ladeiro Y Pelletier L Maad IB Calderaro J Bioulac-Sage P Letexier M Degos F Clément B Balabaud C Chevet E Laurent A Couchy G Letouzé E Calvo F Zucman-Rossi J 《Nature genetics》2012,44(6):694-698
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/β-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors. 相似文献
10.
Horvath A Boikos S Giatzakis C Robinson-White A Groussin L Griffin KJ Stein E Levine E Delimpasi G Hsiao HP Keil M Heyerdahl S Matyakhina L Libè R Fratticci A Kirschner LS Cramer K Gaillard RC Bertagna X Carney JA Bertherat J Bossis I Stratakis CA 《Nature genetics》2006,38(7):794-800
Phosphodiesterases (PDEs) regulate cyclic nucleotide levels. Increased cyclic AMP (cAMP) signaling has been associated with PRKAR1A or GNAS mutations and leads to adrenocortical tumors and Cushing syndrome. We investigated the genetic source of Cushing syndrome in individuals with adrenocortical hyperplasia that was not caused by known defects. We performed genome-wide SNP genotyping, including the adrenocortical tumor DNA. The region with the highest probability to harbor a susceptibility gene by loss of heterozygosity (LOH) and other analyses was 2q31-2q35. We identified mutations disrupting the expression of the PDE11A isoform-4 gene (PDE11A) in three kindreds. Tumor tissues showed 2q31-2q35 LOH, decreased protein expression and high cyclic nucleotide levels and cAMP-responsive element binding protein (CREB) phosphorylation. PDE11A codes for a dual-specificity PDE that is expressed in adrenal cortex and is partially inhibited by tadalafil and other PDE inhibitors; its germline inactivation is associated with adrenocortical hyperplasia, suggesting another means by which dysregulation of cAMP signaling causes endocrine tumors. 相似文献
11.
Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas 总被引:19,自引:0,他引:19
We have recently shown that loss of heterozygosity of specific markers, including those at 10q23, 17p13-p15 and 16q24, can occur in the stromal and epithelial compartments of primary invasive breast carcinomas. Here, we demonstrate high frequencies of somatic mutations in TP53 (encoding tumor protein p53) and PTEN (encoding phosphate and tensin homolog) in breast neoplastic epithelium and stroma. Mutations in TP53 and PTEN are mutually exclusive in either compartment. In contrast, mutations in WFDC1 (16q24, encoding WAP four-disulfide core domain 1) occur with low frequency in the stroma. 相似文献
12.
Fujimoto A Totoki Y Abe T Boroevich KA Hosoda F Nguyen HH Aoki M Hosono N Kubo M Miya F Arai Y Takahashi H Shirakihara T Nagasaki M Shibuya T Nakano K Watanabe-Makino K Tanaka H Nakamura H Kusuda J Ojima H Shimada K Okusaka T Ueno M Shigekawa Y Kawakami Y Arihiro K Ohdan H Gotoh K Ishikawa O Ariizumi S Yamamoto M Yamada T Chayama K Kosuge T Yamaue H Kamatani N Miyano S Nakagama H Nakamura Y Tsunoda T Shibata T Nakagawa H 《Nature genetics》2012,44(7):760-764
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. We sequenced and analyzed the whole genomes of 27 HCCs, 25 of which were associated with hepatitis B or C virus infections, including two sets of multicentric tumors. Although no common somatic mutations were identified in the multicentric tumor pairs, their whole-genome substitution patterns were similar, suggesting that these tumors developed from independent mutations, although their shared etiological backgrounds may have strongly influenced their somatic mutation patterns. Statistical and functional analyses yielded a list of recurrently mutated genes. Multiple chromatin regulators, including ARID1A, ARID1B, ARID2, MLL and MLL3, were mutated in ~50% of the tumors. Hepatitis B virus genome integration in the TERT locus was frequently observed in a high clonal proportion. Our whole-genome sequencing analysis of HCCs identified the influence of etiological background on somatic mutation patterns and subsequent carcinogenesis, as well as recurrent mutations in chromatin regulators in HCCs. 相似文献
13.
Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis 总被引:23,自引:0,他引:23
Howe JR Bair JL Sayed MG Anderson ME Mitros FA Petersen GM Velculescu VE Traverso G Vogelstein B 《Nature genetics》2001,28(2):184-187
Juvenile polyposis (JP; OMIM 174900) is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. Previous studies have demonstrated a locus for JP mapping to 18q21.1 (ref. 3) and germline mutations in the homolog of the gene for mothers against decapentaplegic, Drosophila, (MADH4, also known as SMAD4) in several JP families. However, mutations in MADH4 are only present in a subset of JP cases, and although mutations in the gene for phosphatase and tensin homolog (PTEN) have been described in a few families, undefined genetic heterogeneity remains. Using a genome-wide screen in four JP kindreds without germline mutations in MADH4 or PTEN, we identified linkage with markers from chromosome 10q22-23 (maximum lod score of 4.74, straight theta=0.00). We found no recombinants using markers developed from the vicinity of the gene for bone morphogenetic protein receptor 1A (BMPR1A), a serine-threonine kinase type I receptor involved in bone morphogenetic protein (BMP) signaling. Genomic sequencing of BMPR1A in each of these JP kindreds disclosed germline nonsense mutations in all affected kindred members but not in normal control individuals. These findings indicate involvement of an additional gene in the transforming growth factor-beta (TGF-beta) superfamily in the genesis of JP, and document an unanticipated function for BMP in colonic epithelial growth control. 相似文献
14.
A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer 总被引:28,自引:0,他引:28
Hunter DJ Kraft P Jacobs KB Cox DG Yeager M Hankinson SE Wacholder S Wang Z Welch R Hutchinson A Wang J Yu K Chatterjee N Orr N Willett WC Colditz GA Ziegler RG Berg CD Buys SS McCarty CA Feigelson HS Calle EE Thun MJ Hayes RB Tucker M Gerhard DS Fraumeni JF Hoover RN Thomas G Chanock SJ 《Nature genetics》2007,39(7):870-874
We conducted a genome-wide association study (GWAS) of breast cancer by genotyping 528,173 SNPs in 1,145 postmenopausal women of European ancestry with invasive breast cancer and 1,142 controls. We identified four SNPs in intron 2 of FGFR2 (which encodes a receptor tyrosine kinase and is amplified or overexpressed in some breast cancers) that were highly associated with breast cancer and confirmed this association in 1,776 affected individuals and 2,072 controls from three additional studies. Across the four studies, the association with all four SNPs was highly statistically significant (P(trend) for the most strongly associated SNP (rs1219648) = 1.1 x 10(-10); population attributable risk = 16%). Four SNPs at other loci most strongly associated with breast cancer in the initial GWAS were not associated in the replication studies. Our summary results from the GWAS are available online in a form that should speed the identification of additional risk loci. 相似文献
15.
Quesada V Conde L Villamor N Ordóñez GR Jares P Bassaganyas L Ramsay AJ Beà S Pinyol M Martínez-Trillos A López-Guerra M Colomer D Navarro A Baumann T Aymerich M Rozman M Delgado J Giné E Hernández JM González-Díaz M Puente DA Velasco G Freije JM Tubío JM Royo R Gelpí JL Orozco M Pisano DG Zamora J Vázquez M Valencia A Himmelbauer H Bayés M Heath S Gut M Gut I Estivill X López-Guillermo A Puente XS Campo E López-Otín C 《Nature genetics》2012,44(1):47-52
Here we perform whole-exome sequencing of samples from 105 individuals with chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults in Western countries. We found 1,246 somatic mutations potentially affecting gene function and identified 78 genes with predicted functional alterations in more than one tumor sample. Among these genes, SF3B1, encoding a subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP), is somatically mutated in 9.7% of affected individuals. Further analysis in 279 individuals with CLL showed that SF3B1 mutations were associated with faster disease progression and poor overall survival. This work provides the first comprehensive catalog of somatic mutations in CLL with relevant clinical correlates and defines a large set of new genes that may drive the development of this common form of leukemia. The results reinforce the idea that targeting several well-known genetic pathways, including mRNA splicing, could be useful in the treatment of CLL and other malignancies. 相似文献
16.
The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein 总被引:9,自引:0,他引:9
Pusch CM Zeitz C Brandau O Pesch K Achatz H Feil S Scharfe C Maurer J Jacobi FK Pinckers A Andreasson S Hardcastle A Wissinger B Berger W Meindl A 《Nature genetics》2000,26(3):324-327
X-linked congenital stationary night blindness (XLCSNB) is characterized by impaired scotopic vision with associated ocular symptoms such as myopia, hyperopia, nystagmus and reduced visual acuity. Genetic mapping in families with XLCSNB revealed two different loci on the proximal short arm of the X chromosome. These two genetic subtypes can be distinguished on the basis of electroretinogram (ERG) responses and psychophysical testing as a complete (CSNB1) and an incomplete (CSNB2) form. The CSNB1 locus has been mapped to a 5-cM linkage interval in Xp11.4 (refs 2,5-7). Here we construct and analyse a contig between the markers DXS993 and DXS228, leading to the identification of a new gene mutated in CSNB1 patients. It is partially deleted in 3 families and mutation analysis in a further 21 families detected another 13 different mutations. This gene, designated NYX, encodes a protein of 481 amino acids (nyctalopin) and is expressed at low levels in tissues including retina, brain, testis and muscle. The predicted polypeptide is a glycosylphosphatidylinositol (GPI)-anchored extracellular protein with 11 typical and 2 cysteine-rich, leucine-rich repeats (LRRs). This motif is important for protein-protein interactions and members of the LRR superfamily are involved in cell adhesion and axon guidance. Future functional analysis of nyctalopin might therefore give insight into the fine-regulation of cell-cell contacts in the retina. 相似文献
17.
Sobacchi C Frattini A Guerrini MM Abinun M Pangrazio A Susani L Bredius R Mancini G Cant A Bishop N Grabowski P Del Fattore A Messina C Errigo G Coxon FP Scott DI Teti A Rogers MJ Vezzoni P Villa A Helfrich MH 《Nature genetics》2007,39(8):960-962
Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor-KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration. 相似文献
18.
Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis 总被引:10,自引:0,他引:10
Gong Y Krakow D Marcelino J Wilkin D Chitayat D Babul-Hirji R Hudgins L Cremers CW Cremers FP Brunner HG Reinker K Rimoin DL Cohn DH Goodman FR Reardon W Patton M Francomano CA Warman ML 《Nature genetics》1999,21(3):302-304
The secreted polypeptide noggin (encoded by the Nog gene) binds and inactivates members of the transforming growth factor beta superfamily of signalling proteins (TGFbeta-FMs), such as BMP4 (ref. 1). By diffusing through extracellular matrices more efficiently than TGFbeta-FMs, noggin may have a principal role in creating morphogenic gradients. During mouse embryogenesis, Nog is expressed at multiple sites, including developing bones. Nog-/- mice die at birth from multiple defects that include bony fusion of the appendicular skeleton. We have identified five dominant human NOG mutations in unrelated families segregating proximal symphalangism (SYM1; OMIM 185800) and a de novo mutation in a patient with unaffected parents. We also found a dominant NOG mutation in a family segregating multiple synostoses syndrome (SYNS1; OMIM 186500); both SYM1 and SYNS1 have multiple joint fusion as their principal feature. All seven NOG mutations alter evolutionarily conserved amino acid residues. The findings reported here confirm that NOG is essential for joint formation and suggest that NOG requirements during skeletogenesis differ between species and between specific skeletal elements within species. 相似文献
19.
Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers 总被引:17,自引:0,他引:17
Jacobs JJ Keblusek P Robanus-Maandag E Kristel P Lingbeek M Nederlof PM van Welsem T van de Vijver MJ Koh EY Daley GQ van Lohuizen M 《Nature genetics》2000,26(3):291-299
To identify new immortalizing genes with potential roles in tumorigenesis, we performed a genetic screen aimed to bypass the rapid and tight senescence arrest of primary fibroblasts deficient for the oncogene Bmi1. We identified the T-box member TBX2 as a potent immortalizing gene that acts by downregulating Cdkn2a (p19(ARF)). TBX2 represses the Cdkn2a (p19(ARF)) promoter and attenuates E2F1, Myc or HRAS-mediated induction of Cdkn2a (p19(ARF)). We found TBX2 to be amplified in a subset of primary human breast cancers, indicating that it might contribute to breast cancer development. 相似文献