首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用传统陶瓷制备方法,制备了一种新型无铅压电陶瓷材料(1-x-y)Bi0·5Na0·5TiO3-xBi0·5K0·5TiO3-yBiCrO3(简写为BNT-BKT-BC-x/y).研究了该体系陶瓷微观结构、压电性能和退极化温度的变化规律.结果表明:除x=0·18、y=0·025的组成析出第2相外,其他组成陶瓷均能够形成纯钙钛矿固溶体,陶瓷三方、四方共存的准同型相界(MPB)成分范围为x=0·18~0·21,y=0~0·02.在准同型相界成分附近该体系陶瓷压电性能达到最大值:d33=168pC·N-1,kp=0·326.采用平面机电耦合系数kp和极化相位角θmax与温度的关系确定的退极化温度基本相同,陶瓷的退极化温度随BC含量的增加一直降低,随BKT含量的增加先降低后升高.  相似文献   

2.
通过传统固相法合成了四元系压电陶瓷材料Pb0.95Sr0.05(Zr1-xTix)O3-Pb(Mn1/3Sb2/3)O3-Pb(Zn1/3Nb2/3)O3(简称PZT-PMS-PZN),用XRD技术分析了陶瓷的相结构,研究了不同Zr/Ti比对该材料的机械品质因数Qm、机电耦合系数KP、压电常数d33、介电常数rε以及介电损耗tanδ的影响.结果表明,当0.46≤x≤0.50时,材料四方与菱方两相共存,即为材料的准同型相界.当x=0.48且烧结温度为1150℃时,陶瓷具有优良的综合电学性能.其主要性能参数为:εr=1 761,tanδ=0.002 8,Qm=1300,d33=351pC/N,Kp=0.58.该材料可作为大功率压电陶瓷变压器的候选材料.  相似文献   

3.
采用二次合成法制备不同zr含量(x=0.46~0.52)的0.125 Pb(Mg1/3Nb2/3)O3-0.875PbZrxTi1-xO3(0.125PMN-0.875PZT)三元压电陶瓷。采用x线衍射仪(XRD)、阻抗分析仪等对陶瓷进行表征和性能测试,考察了Zr含量变化对陶瓷烧结相结构、体积密度、介电和压电性能的影响。结果表明:采用二次合成法,制备了纯钙钛矿相结构的陶瓷;当x=0.48~0.50时,0.125PMN-0.875PZT陶瓷处于四方一三方准同型相界(MPB).在x=0.49时制备的0.125PMN-0.875PZT陶瓷性能最佳,体积密度为7.84 g/cm3,介电损耗低至0.76%,相对介电常数为2 130,压电常数为:320 pC/N,机电耦合系数达0.61,机械品质因数为76。  相似文献   

4.
采用两步合成法制备了CeO2掺杂Pb1-xCex/2(Zn1/3Nb2/3)0.70Ti0.3Ba0.15O3(0.70PZN-0.15PT-0.15BT-x,x=0.00,0.02,0.04,0.06)压电陶瓷,研究了铈含量变化对0.70PZN-0.15PT-0.15BT-x压电陶瓷材料相结构及其相关电性能的影响.随CeO2含量增加,居里温度升高,当x=0.04时,其压电系数d33达到225pC/N.  相似文献   

5.
用传统固相法制备PbZrO3-PbTiO3-Pb(Fe2/3W1/3)O3-Pb(Mn1/3Nb2/3)O3(简称PZT-PFW-PMN)四元系压电陶瓷.研究了不同含量的Nb2O5对PZT-PFW-PMN陶瓷的相结构、密度、介电性能和压电性能的影响.结果表明,当预烧温度为800℃,Nb2O5的质量分数w为0.00%并在1 200℃下烧结时,材料具有良好的综合电性能:d33=365pC/N,Kp=0.64,Qm=1 743,tanδ=0.005 6和r=0.997Ω,该组份是大功率压电陶瓷变压器用材料优良的备选体系.  相似文献   

6.
采用固相合成法制备了三元系压电陶瓷Pb_(0.98)Sr_(0.02)(Mn_(1/3)Sb_(2/3)),(Zr_(0.5) Ti_(0.5)_(1-x)O_3(0相似文献   

7.
研究了(Bi1/2Na1/2)TiO3-BaTiO3压电陶瓷在准同型相界附近锰离子掺杂对材料微观结构、压电和介电性能的影响.采用XRD和SEM等方法对材料的相结构和晶粒生长情况进行了研究.结果表明:掺锰有促进烧结的作用并能使晶格发生畸变,使相结构中的四方相向三方相转变;当掺杂量质量分数为0.3%时,可以获得较好的综合性能,压电常数d33=124 pC/N,径向机电耦合系数kp=31%,介电常数3Tε3/0ε=615,介电损耗tanδ=0.014,机械品质因数Qm=267,频率常数Np=3 050 Hz.m.  相似文献   

8.
文章运用准同型相界线性叠加原理,设计了无铅压电陶瓷三元体系(1-x)(0.968Bi0.5Na0.5TiO3-0.032BaTiO3)-xBi0.5K0.5TiO3(简称BNBKT100x),采用传统压电陶瓷固相合成法制备BNBKT100x样品,XRD结果表明,所制备的陶瓷样品为纯的钙钛矿相,其准同型相界在0.08x0.10范围内;详细研究了BNBKT100x样品在准同型相界附近的介电、压电性能和介电弛豫特性。BNBKT100x三元体系无铅压电陶瓷在整个实验组分范围内均为弛豫铁电体,最好的电性能出现在准同型相界附近的组成BNBKT9,其介电和压电性能参数为d33=162 pC/N,kp=31%,3Tε3=2 080,tanδ=4%,Qm=119。  相似文献   

9.
采用传统固相反应法制备四元系0.02Pb(Zn1/3Nb2/3)O3-0.50Pb(Ni1/3Nb2/3)O3-0.48Pb(ZrxTi1-x)O3(0.29≤x≤0.34)陶瓷.观察样品的晶相结构和显微结构,测试压电性能和介电性能.随着Zr/Ti比的增大,晶相从四方相向三方相转变.发现准同型相界位置在x=0.32附近.1 240℃烧结的0.02PZN-0.50PNN-0.48PZ32T陶瓷展现了良好的压电性能,压电常数d33为715 p C/N,机电耦合系数kp为0.541,剩余极化强度Pr为25.5μC/cm2,矫顽场强Ec为5.6 k V/cm.新的压电材料适合高性能压电器件应用,且简单的制备方法给生产带来极大便利.  相似文献   

10.
采用传统固相法合成了0.9{Pb[Zr0.23Ti0.36+0.02(Mg1/2W1/2)+0.39(Ni1/3Nb2/3)]O3}(简称PZT基压电陶瓷)/0.1{Ni0.8Co0.1Cu0.1Fe2O4}(简称NCCF)磁电复合陶瓷材料,研究了该材料在不同烧结温度下的相结构、介电和压电性能.结果表明,该复合材料经不同温度烧结后,仍保持PZT基压电陶瓷和NiCoCu铁氧体的各自相结构,没有新相生成.在1 200℃下烧结时,材料具有较好的综合电性能:d33=317 pC/N,εr=2 593,tanδ=0.017.表明该磁电复合材料可能在高密度信息存储器方面表现出较大的潜在应用.  相似文献   

11.
采用传统陶瓷工艺制备了PNW-PMS-PZT四元系压电陶瓷,分析了其粉体的相结构组成,研究了室温下烧结温度和组分对表观密度ρ、相对介电常数εr、介电损耗tan δ,居里温度Tc和压电常数d33的影响,实验表明在室温下随着PZT含量的增加εr、Tc、d33逐渐增大,tan δ逐渐减小:随着烧结温度的提高,ρ总体增大,εr、d33增大,tan δ逐渐减少,Tc变化不明显。制得了εr=2200,tan δ=0.0062,d33=390pC/N,Tc=235℃的压电材料。  相似文献   

12.
工艺对0-3复合材料介电和压电性能的影响   总被引:5,自引:0,他引:5  
作者以PZT和PVDF为原料,采用热压和轧膜两种方法制备了0-3压电复合材料.研究了复合材料的极化工艺和制备工艺.实验结果表明:与轧膜法相比,热压法制备的复合材料样品有较高的介电常数ε和压电常数d33;在人工极化时,与热压法相比,轧膜法制备的样品的最佳极化电场E,极化温度T和极化时间t均有较高的值.  相似文献   

13.
采用热工艺制备了压电PZT陶瓷与沙林离子键热聚合体树脂复合的0-3结构柔性压电材料.对其动态热机械分析表明:该复合材料软化温度在100℃附近;通过阻尼损耗因子随温度变化曲线的峰位置确定该材料的玻璃化温度约为50℃.通过对不同极化电场下的压电性能的研究,确定该复合材料的最佳极化电场条件为大于4.8 kV/mm;当PZT的体积分数(φ)小于0.5时,复合材料的相对介电常数和压电系数都随PZT体积分数的增大而缓慢增大,实验结果与Yamada模型预测较为一致.该0-3结构(1-φ)Surlyn/φPZT柔性压电材料在盲人触摸键盘、工业振动阻尼器件、柔性压电能量收集器件等领域具有很好的应用前景.  相似文献   

14.
采用传统陶瓷工艺制备了不同Li2CO3和MnO2掺杂的PMN-PMN-PZT四元系压电陶瓷.用XRD技术分析了陶瓷的相结构,研究了不同Li2CO3和MnO2添加量对陶瓷的机械品质因数Qm、机电耦合系数Kp、压电常数d33以及介电损耗tanδ的影响.结果表明,在840℃预烧、1 000℃烧结下,当Li2CO3质量分数为0.1%、MnO2质量分数为0.2%时,陶瓷具有优良的电性能.其主要性能参数为:Kp=0.58,Qm=1 702,d33=268pC/N,r=1.91Ω,tanδ=0.005 2,该材料可作为大功率压电变压器的候选材料.  相似文献   

15.
采用传统压电陶瓷工艺制备了(1-x)B i0.5(Na0.8K0.2)0.5TiO3-xNaSbO3无铅压电陶瓷,利用XRD、SEM等测试技术表征了陶瓷的晶相结构和表面形貌,利用一些电学仪器测试了其介电和压电性能.结果表明,该体系陶瓷具有单相钙钛矿结构,适量的NaSbO3掺杂可以提高该陶瓷的致密性.在室温下,当掺杂量为0.5%时,该体系表现出较好的压电性能:压电常数d33和机电耦合系数kp分别达到107pC/N和0.209;当掺杂量为0.7%时,εr和tanδ分别为1 551和0.05.  相似文献   

16.
采用传统固相法制备了新型(1-x)B i0.5(Na0.8K0.2)0.5TiO3-x(B i0.1La0.9)FeO3无铅压电陶瓷,利用XRD、SEM等测试技术表征了该陶瓷的晶体结构、表面形貌、压电和介电性能.研究结果表明,在所研究的组成范围内陶瓷材料均能形成纯的钙钛矿固溶体.压电性能随x的增加先增加后减少,在x=0.005时压电常数及机电耦合系数达到最大值(d33=149pC/N,kp=0.270).  相似文献   

17.
通过熔盐法成功地合成了四元系压电陶瓷材料0.9Pb0.95Sr0.05(Zr0.52Ti0.48)O3-xPb(Zn1/3 Nb2/3)O3-(0.1-x)Pb(Mn1/3 Sb2/3)O3(简称PZT—PZN—PMS),用XRD技术分析了粉体和陶瓷的相结构,研究了不同Pb(Zn1/3Nb2/3)O3含量对该材料的机械品质因数Qm、机电耦合系数Kp、压电常数d33以及介电损耗tgδ影响.结果表明,随着PZN含量逐渐增加,Kp先增加后降低,d33逐渐增加,tgδ先减小后增加,而Qm却逐渐减小;当PZN摩尔含量为0.05时,陶瓷具有优良的压电性能.材料的主要性能参数为:Qm=1381,Kp=0.64,d33=369pC/N,tgδ=0.0044.该材料可作为大功率压电陶瓷变压器的候选材料。  相似文献   

18.
采用传统固相反应法制备了(KxNa1-x)(Nb0.7Ta0.3)O3 (KNNT)系列无铅压电陶瓷. 通过XRD和SEM分析方法研究了样品的结构, 晶格常数变化和微观形貌. 研究发现晶格常数在x = 0.40附近发生了不连续性变化, 微观结构随K含量的增多表现出微小的差异, 压电常数d33,平面机电耦合系数kp在x = 0.40-0.55较宽范围内发生了较小的变化. K含量为0.40时获得了压电性能最优的KNNT陶瓷, d33达到204 pC/N, 机电耦合系数kp为46%, kt为44%.  相似文献   

19.
掺锰BNBT基压电陶瓷性能研究   总被引:2,自引:0,他引:2  
研究了添加不同剂量锰对(Bi1/2Na1/2)TiO3-BaTiO3(BNBT)二元系的介电、压电性能的影响.发现居里温度随锰掺杂量的增加而明显下降并逐步趋于稳定.当0≤x≤0.3时,介电性能随x的增加明显加强,在x=0.3时介电常数达到1 850;当x>0.3时介电性能降低.压电常数d33、kt 也表现出类似的变化趋势.另外,实验发现在该体系中添加适量Mn,可在较低的极化场强下得到较高的机电耦合系数,表明掺适量锰可以有效降低矫顽场强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号