首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
Integrated fission track and (U-Th)/He analysis is carried out on 6 apatite and 6 zircon samples from a near vertical section in The Tiantangzhai region at the core of the present Dabieshan orogen. The result shows that the region experienced cooling/exhumation during the Late Cretaceousand Early Tertiary period. Age-elevation relationships for different dating systems and different minerals suggest a pulse of rapid exhumation at ~110 Ma before present, preserved in the structurally highest samples. At lower elevations, ages begin to decrease with decreasing elevation, suggesting lower exhumation rates since 90 Ma. Two periods of different exhumation rates are identified since 90 Ma. The average apparent exhumation rate for the period of 43.4—22.5 is 0.062 km/Ma, whereas that for the period of 76.4—47.4 Ma is 0.039 km/Ma.  相似文献   

2.
Fission track (FT) ages of apatite and zircon from four granite batholiths from Lhasa and Shannan areas are measured.The FT ages of apatite range from 3.2±8.3 Ma, corresponding to the uplift rates of 0.12±0.20 mm·a~(-1) during this period. The upliftheight is 580m, showing that there is not large-scale rapid uplifting in southern Tibet from 3.2 to 8.3 Ma. The zircon FT ages of Lhasabatholith are 25.9±1.7 and 32.7±2.8 Ma, yielding an uplift rate of 0.08 mm·a~(-1) between 26 and 33 Ma. Combining this work withother studies, it is suggested that the average uplift rate in southern Tibet is low from the time of collision between India and Asian conti-nents to ~3Ma. The uplift of Tibetan Plateau seems to have finished in multi-stage processes with varied rates.  相似文献   

3.
Fission track geological chronology is an effective method of study on tectonic movement of fault zone. Apatite fission track (AFT) dating analyses of 9-apatite and 4-zircon samples collected from Lhasa to Langkazi, ~70-km-long in SN provide an understanding of the age and the uplifting of both sides of the Yarlung Zangbo Thrust Zone (YZTZ) in this work. The AFT ages range from ~37 to 14 Ma, indicating the time of major tectono-thermal events, i.e. the continent-continent collision along the YZTZ. Based on the relationship between the AFT ages and the sample elevations, there were two tectonic active periods: ~37—20 Ma and 20—14 Ma. In the first period the tectonic event did not bring on differential uplifting. Rapid differential uplifting with rapid cooling, resulting from thrusting, took place in the second period. The vertical displacement was ~1020 m and total ~2.9 km of overburden has been removed from the present-day surface since cooling below ~110℃ began. The maximum cooling and denudation occurred at a rate of ~7℃/Ma and ~207 m/Ma respectively since ~14 Ma. The zircon fission track analysis demonstrates that the temperature of tectono-thermal events did not exceed 310℃.  相似文献   

4.
The volcanic rocks of the Xiong‘er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolutionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong‘er Group formed in 1.80--1.75 Ga of Paleo-Proterozoic. Since the Xiong‘er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System is therefore assumed to be formed in 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong‘er Group thus represent the initial magmatism of the Paleo-Proterozoic breakup of the North China Craton. Numerous inherited zircons in the volcanic rocks mainly formed in ~2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~2.20 Ga crust, or from a mantle magma with significant contamination of the ~2.20 Ga crust.  相似文献   

5.
Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0-0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8-0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.  相似文献   

6.
Climate and tectonism are both particularly intense in the Yarlung Zangbo (Tsangpo) Great Canyon in the eastern Himalayan syntaxis,which is characterized by the most rapid landscape evolution of anywhere in the world.Thus,the eastern Himalayan syntaxis is one of the best locations to study the interactions between climate and tectonics.This paper investigates the cooling ages of the Doxong La-Baibung profile using apatite fission track (AFT) dating on 11 bedrock samples at elevations ranging from 4210 to 710 m.There are topographic,climatic,metamorphic,and thermochronological gradients in the profile,providing good conditions to study interactions between climate and tectonics.AFT ages ranged from 4.6±0.6 Ma to 1.7±0.3 Ma,and the mean fission track lengths ranged from 11.0 to 12.4 μm.It was found that the cooling rates revealed by AFT ages increased with decreasing elevation.However,the tendency of the cooling rates revealed by the 40 Ar-39 Ar ages was different from that indicated by the AFT ages.Moreover,for most districts of the eastern Himalayan syntaxis,the compiled AFT age distribution correlates well with the annual average precipitation,indicating the coupling of the cooling and erosion rates of the near-surface rock and precipitation.The geothermal history modeling results indicate an obvious increase in the cooling and erosion rate between 1.0 and 0.5 Ma.This age is consistent with other research findings for this time,when the vapor channel of the Yarlung Zangbo Great Canyon began to take effect.These evidences suggest that climate,especially precipitation,has acting as a key factor influencing the rapid cooling and erosion in the Yarlung Zangbo Great Canyon since 1-0.5 Ma.  相似文献   

7.
Single-grain zircon U-Pb dating was carried out to constrain the emplacement timing of granitic plutons at Chaxinzi, Xiaoweishahe and Longtou in the Tonghua area, south of Jilin Province. The results show that these plutons formed in the Triassic with ages of 203—217 Ma. Geological and geochemical characteristics indicate that the plutons are composed of quartz diorite and granite. The former was derived from partial melting of mafic lower crust, whereas the latter originated from thickened crust with garnet as the residue in the source. It appears that protoliths of these two types of granitits are different although they have the same emplacement age. Considering that these plutons are petrologically different from the coeval granites in the Xingmeng (Xing‘an-Mongolian) to Jihei (Jilin-Heilongjiang) orogenic belt in the north, it is suggested that their formation was related to the Dabie-Sulu ultrahigh-pressure collisional orogenesis since their ages are only 10—20 Ma younger than timing of the ultrahigh-pressure metamorphism, but comparable to that of the first rapid exhumation of the ultra-high-pressure metamorphic rocks and the emplacement of the post-collisional granites.  相似文献   

8.
A report is presented of SHRIMP zircon U-Pb dating data of meta-igneous and meta-sedimentary rocks of the Xinghuadukou Group(Xinlin-Hanjiayuanzi area,Heilongjiang Province)and meta-volcanic rocks of the Zhalantun Group(Zhalantun district,Inner Mongolia).The SHRIMP analyses show that the meta-igneous rocks from the Xinghuadukou Group formed at 506±10―547±46 Ma,belonging to Early-Middle Precambrian,whereas the meta-sedimentary rocks yielded detrital zircons,with ages of 1.0―1.2,1.6―1.8 and 2.5―2.6 Ga,indicative of deposition age at least<1.0 Ga. Meta-basic volcanic rocks from the Zhalantun Group have a formation age of 506±3 Ma.These data suggest that both the Xinghuadukou and Zhalantun Groups formed during Cambrian and/or Neoproterozoic time,rather than Paleoproterozoic time as previously thought.Early Precambrian inherited zircons in the meta-igneous rocks and numerous Precambrian detrital zircons in the meta-sedimentary rocks imply that these rocks were formed proximal to older crust.It is inferred that the Xinghuadukou and Zhalantun Groups represent Cambrian and/or Neoproterozoic vol- cano-sedimentary sequences formed in an active continental margin setting.  相似文献   

9.
Early-crystallizing chromian spinel(Cr-spinel) in the Nagqu ophiolite has high Os and low Re contents,and it is resistant to alteration during serpentinization,weathering and metamorphism.The chemical composition of primitive magma is preserved in Cr-spinel,which makes it suitable for determining the initial Os-isotope composition of the mantle source.This study presents Cr-spinel Os isotopes and zircon U-Pb ages for cumulate dunite and gabbro,respectively,in the same cumulate section of the ophiolite at Nagqu in Tibet.The results shed light on the formation and evolution of lithospheric mantle.The Nagqu ophiolite is located in the central part of the Bangong-Nujiang suture zone.It is a remnant of the Neotethyan oceanic crust,and contains cumulate dunite and gabbro.Zircon from the gabbro yielded a weighted mean 206 Pb/238 U age of 183.7±1 Ma.Cr-spinel exhibits Os values of 0.2 to 0.3,suggesting that the mantle source for the dunite is similar to that of carbonaceous chondrites.Thus,the Tibetan lithosphere is primarily a relic of Tethyan oceanic lithosphere,which has formed by the transformation of the normal asthenospheric mantle in the Mesozoic.This is the first study to combine the spinel Os isotopes with accurate zircon U-Pb ages to constrain the geochemical characteristics of the mantle source for the ophiolite.  相似文献   

10.
Apatite fission track dating is carried out on nine samples collected from the central part (Lianmuqin section) and from both northern and southern margins of Turpan-Hami Basin. The fission-track ages of seven Jurassic samples are distinctly younger than depositional ages. In contrast, the fission-track ages of two Cretaceous samples are older than, or as old as depositional ages. These observations indicate that the Jurassic samples have been annealed or partially annealed, whereas the Cretaceous samples have not been annealed.The further thermal modelling results show that Turpan-Hami Basin experienced a Late Cretaceous period (120-100 Ma) of tectonic uplift with rapid cooling and exhumation of sediments. The samples underwent a Cenozoic period of reburial and re-heating and were exhumed again at 10-8 Ma.  相似文献   

11.
南天山新生代隆升和去顶作用过程   总被引:22,自引:1,他引:22  
利用磷灰石裂变径迹技术并结合库车坳陷的沉积和变形特征,对南天山的隆升和去顶作用过程进行详细的研究。南天山在中新世早期就开始了现代天山形成的隆升事件,根据样品的磷灰石裂变径迹结果,其隆升年龄为17~25Ma;而且此隆升事件是一快速隆升事件,隆升速率达到138.8~198.8m/Ma。中新世南天山隆升的南部边界并不是前人所认为的北部古生代地层和南部中新生代地层之间的冲断层,而是在南部的中新生代地层中。在库车坳陷的阳霞地区,隆升的界线位于吐格尔明背斜核部的韧性剪切带。通过库车坳陷的新生代沉积和变形特征的分析,提出了天山中新世以来的隆升与库车坳陷的沉积和变形特征存在很好的耦合关系。  相似文献   

12.
鄂尔多斯盆地西缘差异抬升的裂变径迹证据   总被引:4,自引:0,他引:4  
目的探讨鄂尔多斯盆地西缘从南至北不同地区的差异抬升时期及抬升速率。方法利用磷灰石和锆石裂变径迹年龄的综合分析,研究盆地西缘的构造差异抬升。结果西缘北部汝箕沟地区中生代以来有两次较大的抬升时期,分别为晚白垩世和始新世,抬升速率分别为29.5 m/Ma和46.5 m/Ma。中部石沟驿地区抬升时期较早,为晚侏罗世和晚白垩世,抬升速率分别为40.0m/Ma和21.9 m/Ma。南部的差异抬升最为强烈,最早的抬升时期为晚侏罗世,在炭山地区表现明显;早白垩世末—晚白垩世南部地区发生整体抬升;中新世末期六盘山地区发生快速抬升。罗山、炭山地区相对抬升速率和后期抬升速率为46.3 m/Ma和25 m/Ma,六盘山地区则分别为22.5m/Ma和283.3 m/Ma。结论在鄂尔多斯盆地西部,最早的抬升时期为晚侏罗世,晚三叠世并没有抬升事件,故西部前陆盆地的形态始显现于晚侏罗世。西部的差异抬升导致了不同地区前陆盆地构造发展的不平衡。  相似文献   

13.
内蒙古大青山晚中生代以来的隆升-剥露过程   总被引:1,自引:0,他引:1  
对大青山东段4件基岩样品进行磷灰石裂变径迹研究,获得该区晚中生代以来的隆升?剥露历史,并探讨大青山现代地貌的形成。样品的磷灰石裂变径迹年龄为57.7±3.8~50.4±3.3 Ma,封闭径迹长度分布在10.7±0.4~9.9±0.1μm之间。热历史模拟结果表明,大青山地区存在晚白垩世(约100~90 Ma)和中?晚中新世(13.5~7 Ma)以来两个快速抬升冷却阶段,13.5~7 Ma以来是本区剥露最快的时期,这一阶段的隆升造就现今大青山的地貌格局。  相似文献   

14.
The tectonic uplift of the Hua Shan in the Cenozoic   总被引:5,自引:0,他引:5  
Six granite samples were collected from six difference elevation locations at the Hua Shan in a main ridge of the Qinling Mountain. Apatite and zircon separated from these six samples were dated by the fission track technique. An assessment of the Cenozoic uplift or exhumation rate was obtained from the altitude difference of sampling samples dated by fission track, and from the difference of fission track dates of both apatite and zircon for a sample. The preliminary results suggest that the beginning of uplift of the Hua Shan was as early as 68.2 MaBP and the uplift rates for different periods are 0.02–0.19 mm/a (from the elevation difference) or 0.12–0.16 mm/a (from two mineral fission track dates). The average uplift rate is 0.12 mm/a (from the elevation difference) or 0.14 mm/a (from two mineral fission track dates). The uplift of the Hua Shan might accelerate since (17.8±2.0) MaBP, and the average uplift rate is about 0.19 mm/a.  相似文献   

15.
鄂尔多斯盆地中生代构造事件及其沉积响应特点   总被引:9,自引:0,他引:9  
以鄂尔多斯盆地中新生代构造演化的区域动力学环境分析为基础,重点通过锆石和磷灰石裂变径迹年龄数据的统计分析,提供了鄂尔多斯盆地中新生代构造事件的年代学约束,并结合地层不整合关系和沉积建造特征讨论了中生代构造事件的沉积响应特点.讨论结果表明:印支期构造事件主要发生在230~190Ma,在盆地西南缘发育晚三叠世粗碎屑类磨拉石建造.燕山期构造事件主要发生在燕山中晚期的150~85Ma,包含145Ma±、120Ma±和95Ma±三个峰值年龄组,锆石和磷灰石裂变径迹年龄叠合分布的峰值年龄(140~150Ma±,平均145Ma±),指示了鄂尔多斯盆地中新生代构造演化过程中最为关键的一次构造变革事件,并在盆地西南缘发育上侏罗统芬芳河组和下白垩统志丹群等多套粗碎屑类磨拉石建造.  相似文献   

16.
Based on detailed field investigations and petrographic observations, we discovered Neoproterozoic-emplaced granite from the metavolcanics of the Dingyuan Formation in the western Beihuaiyang zone, the Dabie orogen. This study reports the results of zircon U-Pb dating and preliminary petrographic observations on two metagranite samples. The studied rocks experienced epidote-amphibolite facies metamorphism and strong structural deformation. Their U-Pb ages are 726 ± 6 and 758 ± 12 Ma, respectively, similar to those for the Luzhenguan complex in the eastern segment of the Beihuaiyang zone. In combination with previously determined 635 ± 5 Ma low-grade metagabbro, this study suggests the occurrence of at least two types of Neoproterozoic intrusive rocks in the Beihuaiyang zone, the northern margin of the South China Block (SCB): 726–758 Ma metagranite and 635 Ma metagabbro. These rocks occur within the metamorphosed Ordovician volcanic zone (originally named the Dingyuan Formation) and are in tectonic contact to each other, but they formed in different tectonic settings. The protolith ages for the Neoproterozoic low-grade metaigneous rocks are in good agreement not only with ages for two episodes of mid- and late-Neoproterozoic mafic and felsic magmatism in the Suizhou and Zaoyang area, Hubei Province, but also agree with protolith ages of ultrahigh-pressure metaigneous rocks in the Dabie-Sulu orogenic belt. In view of their tectonic relationships to country rocks, it appears that these Neoproterozoic low-grade rocks are exotic and they may have been detached and scraped from subducting SCB crust in the early Triassic during the initial continental subduction, and thrusted over Paleozoic metamorphosed rocks in the southern margin of the North China Block during continental collision.  相似文献   

17.
U-Pb dating coupled with Hf isotope analyses on zircon from metasedimentary granulite enclaves in the Jiuzhou peraluminous granite from the Shiwandashan area in southeastern Guangxi Province, South China are presented in this paper. The results show that the protoliths of these granulite enclaves were mainly composed of Neo-Mesoproterozoic (564–1061 Ma) clastic materials with a peak age at ~822 Ma. These materials were probably derived from the igneous rocks that were emplaced during the Neoproterozoic breakup of Rodinian Supercontinent. Subordinate sediments include the Paleoproterozoic (1778–2227 Ma) and even the Meso-Paleoarchean materials with the oldest U-Pb age at 3551±8 Ma, indicating the existence of ancient crustal rocks in the area and/or its surrounding regions. Younger grains include the early Mesozoic (234±2 Ma) magmatic zircon populations and the late Permian (253±3 Ma) metamorphic zircon populations. Further zircon Hf isotope analyses reveal that their protoliths were complex, containing both recycled crustal rocks and juvenile materials. Combined zircon U-Pb ages and Hf isotope compositions indicate that at ~253 Ma, the Shiwandashan area experienced an intensive thermal event that resulted in the granulite-facies metamorphism; and that crustal remelting occurred at ~234 Ma to form the S-type granitoids during the uplifting stage. The metasedimentary granulite enclaves are resitites of these granitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号