首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatostatin immunoreactivity in neuritic plaques of Alzheimer's patients   总被引:1,自引:0,他引:1  
J H Morrison  J Rogers  S Scherr  R Benoit  F E Bloom 《Nature》1985,314(6006):90-92
Senile dementia of the Alzheimer's type can be diagnosed with certainty only by examining neurofibrillary tangles and neuritic plaques under the microscope. Recently, it has been suggested that the condition is linked to specific neurotransmitter systems, with a decline of cortical acetylcholine, choline acetyltransferase, cholinergic neurones projecting to the cortex, cortical noradrenaline content, locus coeruleus neurones and cortical somatostatic content. Using immunocytochemical methods, we here report that somatostatin-immunoreactive processes are present in neuritic plaques in human Alzheimer's specimens. These data, as well as other reports of non-cholinergic changes, strongly imply that Alzheimer's disease cannot be linked exclusively to cortical cholinergic elements, as proposed previously. Rather, our data on plaque and somatostatin co-localization and distribution patterns suggest that Alzheimer's neuropathology may involve primarily the loss of selective cortical neurones that are targets of the implicated transmitter systems and that plaque formation may result from the degeneration of presynaptic and postsynaptic neurites of large projection neurones in layers III and V. Given the neurochemically heterogeneous input to these cells, it is not surprising that several neurotransmitter systems, one of which is somatostatin, are implicated in the pathology of Alzheimer's disease.  相似文献   

2.
Substance P in the ascending cholinergic reticular system   总被引:3,自引:0,他引:3  
S R Vincent  K Satoh  D M Armstrong  H C Fibiger 《Nature》1983,306(5944):688-691
The neocortex receives a major cholinergic innervation from magnocellular neurones in the basal forebrain. However, an ascending cholinergic reticular system has also been postulated to arise from acetylcholinesterase (AChE)-containing neurones in the midbrain and pontine tegmentum. Lesions of this region decrease both AChE and choline acetyltransferase (ChAT) in various forebrain areas, and recent immunohistochemical studies have identified a group of ChAT-containing cell bodies in the midbrain reticular formation and dorsolateral pontine tegmentum. Here we have combined retrograde tracing with ChAT immunohistochemistry to demonstrate that this tegmental cholinergic cell group also directly innervates the cerebral cortex. Other immunohistochemical studies have indicated that the neuropeptide substance P is also present in certain cells in the laterodorsal tegmentum, and these too appear to project to the forebrain. We have therefore performed immunohistochemistry for both ChAT and substance P and have discovered that a subpopulation of the ascending cholinergic reticular neurones contains substance P. Thus, peptide-cholinergic coexistence, previously noted in peripheral neurones, also occurs in the brain.  相似文献   

3.
P Davies  R Katzman  R D Terry 《Nature》1980,288(5788):279-280
Both Alzheimer's disease and senile dementia of the Alzheimer type (AD/SDAT) are progressive dementias characterized neuropathologically by the presence in the cerebral cortex of numerous neurofibrillary tangles and neuritic plaques. We use the abbreviation AD/SDAT to denote all such cases, irrespective of age of onset. Studies of neurotransmitter-related parameters in autopsied brain tissues from patients with AD/SDAT have, to date, been confined to five putative transmitter systems. Acetycholine-releasing neurones seem to be most markedly and consistently affected, as judged by the extensive reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities that have been reported. Despite numerous studies, there is no consistent evidence for the involvement of neurones releasing dopamine, noradrenaline, serotonin, or gamma-aminobutyric acid in AD/SDAT, nor for loss of muscarinic cholinergic receptors. Thus, the involvement of cholinergic neurones in AD/SDAT seems to be specific. However, the possible involvement of neurones using other chemicals as transmitters has yet to be explored. The recent recognition of the existence of so-called 'peptidergic neurones' in the mammalian brain (for review see ref. 8) and the availability of radioimmunoassay (RIA) techniques for studying these peptides, have led us to begin a systematic investigation of neuropeptides in autopsied brain tissue from cases of AD/SDAT, and from neurologically normal individuals. We report here results obtained with a RIA for somatostatin, showing that somatostatin-like immunoreactivity in the cerebral cortex is reduced in tissue from AD/SDAT patients.  相似文献   

4.
G Aston-Jones  J Rogers  R D Shaver  T G Dinan  D E Moss 《Nature》1985,318(6045):462-464
Recent studies have renewed interest in the role of acetylcholine (ACh) in the cognitive changes associated with ageing and dementia. Deficits in cortical choline acetyltransferase (ChAT) in Alzheimer's disease have been consistently demonstrated, while other research has suggested a connection between deterioration of cortical ACh fibres and dementia. However, despite clear biochemical and anatomical evidence for a fall in ACh in dementia, results of therapeutic trials with cholinergic agonists, precursors and cholinesterase inhibitors have been inconsistent. Such findings suggest that cortical cholinergic disorders are not wholly a function of simple biochemical change; alterations of impulse flow along cholinergic fibres could well be as debilitating. An important extrinsic source of cortical ACh innervation derives from neurones diffusely located in rat basal forebrain, denoted the nucleus basalis (NB). We have now investigated the impulse conduction properties of cortically projecting, putatively cholinergic NB axons in adult and aged rats and have found that conduction latencies from NB to frontal cortex are significantly longer (by 51%) in aged animals. In addition, systematic analysis varying cortical stimulation depth revealed that these longer latencies are due entirely to decreased conduction velocities in the subcortical fibre projections. Indeed, intracortical velocities were virtually identical in the two groups. Our results indicate that ageing occasions a decrease in the temporal fidelity of impulse flow in the cholinergic input to the cortex from the NB, a previously overlooked but potentially important element in cognitive deficits that occur with age.  相似文献   

5.
Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.  相似文献   

6.
J E Smith  C Co  M E Freeman  M P Sands  J D Lane 《Nature》1980,287(5778):152-154
Drugs of abuse probably exert their reinforcing effects through 'reward' pathways in the central nervous system (CNS). Neuronal systems mediating opiate reinforcement have been investigated using pharmacological and electrolytic lesion procedures. Drugs that interfere with catecholaminergic and cholinergic neuronal activity decrease intravenous (i.v.) morphine self-administration in monkeys and rats. Electrolytic lesion procedures in rats have demonstrated that the medial forebrain bundle and caudate nucleus are important in maintaining i.v. morphine self-administration. We have now carried out a direct investigation of striatal (caudate nucleus, putamen and globus pallidus) neuronal systems. We show here that striatal catecholaminergic systems are important in mediating opiate reinforcement, and present direct evidence for the involvement of neurotransmitter systems in morphine reward.  相似文献   

7.
M Docherty  H F Bradford  J Y Wu 《Nature》1987,330(6143):64-66
Glutamate and aspartate are known to be released in a calcium-dependent fashion by depolarizing stimulation of mammalian brain synaptosomes (isolated nerve endings), an observation which strengthens their claims to be neurotransmitter candidates. The source of these compounds has been interpreted as the exclusively glutamatergic or aspartatergic synaptosome sub-populations assumed to be present in the standard heterogeneous preparations from mammalian brain. Several neurotransmitter-specific synaptosomal surface markers have recently been identified by immunolysis studies and these have allowed separation of subpopulations of synaptosomes by an affinity purification method. These markers appear to be closely related to the biosynthetic enzyme for the principal neurotransmitter released by each sub-category of synaptosome. We have isolated highly purified, metabolically active, GABAergic and cholinergic synaptosomes from cerebral cortex using antisera recognizing either glutamate decarboxylase (GAD) or choline acetyltransferase (ChAT), in conjunction with magnetic microspheres covalently coupled to Protein A (ref. 8), and now report that these synaptosomes release both glutamate and aspartate, in addition to their principal neurotransmitter, when treated with chemical depolarizing agents.  相似文献   

8.
Corticotropin releasing factor (CRF) is a key hormone in the integrated response to stress, acting both as the major regulator of pituitary adrenocorticotropic hormone (ACTH) release and as a neuropeptide in the brain. The actions of CRF are mediated by specific plasma membrane receptors in the anterior pituitary gland and in discrete brain areas including the cerebral cortex and several regions related to the limbic system. In addition to the pituitary and central actions of CRF, systemic administration of the peptide in the rat, dog, monkey and man causes hypotension and tachycardia because of a decrease in peripheral vascular resistance. These observations, in conjunction with the finding of immunoreactive and bioactive CRF in peripheral tissues, suggest that the peptide is locally released in tissues to act as a neurotransmitter or paracrine hormone. As CRF is present in the adrenal medulla and the peptide is known to modulate the central activity of the autonomic nervous system, we investigated the possibility that CRF is involved in the regulation of the peripheral autonomic nervous system. Such an action of CRF is supported by our demonstration of specific CRF receptors in the monkey adrenal medulla and sympathetic ganglia. In the adrenal medulla, these receptors are coupled to adenylate cyclase and can stimulate the secretion of catecholamines and Met-enkephalin.  相似文献   

9.
F Eckenstein  R W Baughman 《Nature》1984,309(5964):153-155
The existence of cholinergic neuronal cell bodies in mammalian cerebral cortex was long the subject of much controversy (see ref. 1 for review). Recently, however, a specific cholinergic marker, the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT, E.C.2.3.1.6), was demonstrated by immunohistochemical methods to be present in bipolar neurones in rat cortex. Here we show that at least 80% of these intrinsic cholinergic neurones also contain immunoreactivity for vasoactive intestinal polypeptide (VIP), a neuroactive peptide found to be present in a subpopulation of cortical neurones. On the other hand, we find that the ChAT-positive cells in the basal forebrain, which are another major source of cholinergic innervation of the cortex, contain no detectable VIP-immunoreactivity. In addition, we have observed by both light and electron microscopy that some VIP- and some ChAT-positive structures in cortex are closely associated with blood vessels.  相似文献   

10.
T M Egan  R A North 《Nature》1986,319(6052):405-407
Acetylcholine (ACh) is considered to act as a neurotransmitter in the mammalian brain by binding to membrane receptors and bringing about a change in neurone excitability. In the case of muscarinic receptors, cell excitability is usually increased; this effect results from a closure of membrane potassium channels in cortical cells. However, some central neurones are inhibited by ACh, and we hypothesized that these two opposite effects of ACh resulted from interactions with different subtypes of muscarinic receptor. We made intracellular recordings from neurones in the rat nucleus parabrachialis, a group of neurones in the upper pons some of which themselves synthesize ACh. ACh and muscarine caused a membrane hyperpolarization which resulted from an increase in the membrane conductance to potassium ions. The muscarinic receptor subtype was characterized by determining the dissociation equilibrium constant (KD) for pirenzepine during the intracellular recording; the value of approximately 600 nM indicates a receptor in the M2 class. This muscarinic receptor is quite different from that which brings about a decrease in potassium conductance in other neurones, which has a pirenzepine KD of approximately 10 nM (M1 receptors). It is possible that antagonists selective for this kind of M2 receptor would be useful in the management of conditions, such as Alzheimer's disease, which are associated with a reduced effectiveness of cholinergic neurones.  相似文献   

11.
G W Roberts  T J Crow  J M Polak 《Nature》1985,314(6006):92-94
Senile dementia of the Alzheimer type is a chronic, progressive neuropsychiatric condition characterized clinically by global intellectual impairment and neuropathologically by the presence of numerous argyrophilic plaques and tangles. Neurochemical investigations have established loss of the cholinergic and aminergic projections to the cerebral cortex and a loss of the content of somatostatin, with preservation of cholecystokinin and vasoactive intestinal polypeptide, neuropeptides also located in cells intrinsic to the cortex. We describe here the relationship between cortical somatostatin immunoreactivity and the plaques and tangles of diseased tissue by immunocytochemical and silver impregnation techniques on paraffin-embedded tissue. In sections of Alzheimer's tissue, cortical somatostatin-immunoreactive perikarya exhibited morphological changes consistent with neuronal degeneration. Silver-stained material immunostained subsequently showed that many neurones containing tangles were also somatostatin positive. No such colocalization was observed using antisera to other neuropeptides. Our findings indicate that a subclass of somatostatin-positive neurones are affected selectively in Alzheimer's disease and that these neurones also contain neuronal tangles. Thus, destruction of somatostatin-containing neurones is an early and perhaps critical event in the disease process.  相似文献   

12.
Among various neuropeptides present in the central nervous system (CNS), substance P, an undecapeptide, is of great interest as a putative pain neurotransmitter. Substance P is present within numerous intrinsic neural pathways throughout the CNS. Several groups have attempted to label substance P receptors on brain membranes by ligand binding techniques; only one study used native 3H-labelled substance P as the ligand and the precise anatomical distribution of substance P receptors has not yet been described. Here we report the autoradiographic localization of 3H-labelled substance P receptors in rat brain using the in vitro autoradiographic technique developed recently. 3H-substance P binds specifically to an apparently single class of sites on slide-mounted brain sections (Kd = 0.52 nM; Bmax = 21.6 fmol per mg protein). The ligand selectivity pattern suggests that 3H-substance P binding sites are similar to those found in other assays. 3H-substance P receptors are highly concentrated in the external layers of the olfactory bulb, medial amygdala, dentate gyrus, superior colliculus, dorsal parabrachial nucleus and locus coeruleus, with moderate densities being found in the nucleus accumbens, striatum, periaqueductal grey and subiculum. The distribution of 3H-substance P receptors suggests that substance P is probably involved in the control of sensory processes such as pain, vision, audition and olfaction.  相似文献   

13.
The most abundant inhibitory neurotransmitter in the central nervous system, gamma-aminobutyric acid (GABA), exerts its main effects via a GABAA receptor that gates a chloride channel in the subsynaptic membrane. These receptors can contain a modulatory unit, the benzodiazepine receptor, through which ligands of different chemical classes can increase or decrease GABAA receptor function. We have now visualized a GABAA receptor in mammalian brain using monoclonal antibodies. The protein complex recognized by the antibodies contained high- and low-affinity binding sites for GABA as well as binding sites for benzodiazepines, indicative of a GABAA receptor functionally associated with benzodiazepine receptors. As the pattern of brain immunoreactivity corresponds to the autoradiographical distribution of benzodiazepine binding sites, most benzodiazepine receptors seem to be part of GABAA receptors. Two constituent proteins were identified immunologically. Because the monoclonal antibodies cross-react with human brain, they provide a means for elucidating those CNS disorders which may be linked to a dysfunction of a GABAA receptor.  相似文献   

14.
Using immunohistochemical method and double staining technique, the localization of growth hormone (GH) and somatostatin receptors in the nervous system and Hatschek's pit of amphioxus has been investigated. The results showed that the growth hormone-like nerve cells and endocrine cells as well as three subtypes of somatostatin receptors exist in the nervous system and Hatschek's pit, and GH-like nerve cells and endocrine cells co-exist with three subtypes of somatostatin receptors in the brain vesicle and Hatschek's pit. It is suggested that a primitive control system of inhibitory growth hormone secretion in Hatschek's pit could have been developed in amphioxus, as in vertebrates. The present study provides new evidence for the endocrinology and the evolution of Hatschek's pit.  相似文献   

15.
Using immunohistochemical method and double staining technique, the localization of growth hormone (GH) and somatostatin receptors in the nervous system and Hatschek's pit of amphioxus has been investigated. The results showed that the growth hormone-like nerve cells and endocrine cells as well as three subtypes of somatostatin receptors exist in the nervous system and Hatschek's pit, and GH-like nerve cells and endocrine cells co-exist with three subtypes of somatostatin receptors in the brain vesicle and Hatschek's pit. It is suggested that a primitive control system of inhibitory growth hormone secretion in Hatschek's pit could have been developed in amphioxus, as in vertebrates. The present study provides new evidence for the endocrinology and the evolution of Hatschek's pit.  相似文献   

16.
中枢烟碱乙酰胆碱受体(nAchR)和Alzheimer病(AD)的研究进展迅猛.AD与胆碱能神经系统的功能缺陷密切相关,分子遗传学和药理学研究已经认为中枢神经系统存在多种nAchR的亚型,目前在AD病人发现只是某些nAchR的亚型发生变化,因此.研究中枢nAchR的多样性和药理反应特性.为揭示AD的发病机理和治疗有着重要意义.  相似文献   

17.
GABA affects the release of gastrin and somatostatin from rat antral mucosa   总被引:2,自引:0,他引:2  
R F Harty  P A Franklin 《Nature》1983,303(5918):623-624
gamma-Aminobutyric acid (GABA) is regarded as the major inhibitory neurotransmitter in the central nervous system of vertebrates. GABA exerts its inhibitory actions by interacting with specific receptors on pre- and postsynaptic membranes and has been shown to inhibit somatostatin release from hypothalamic neurones in vitro. Concepts of innervation of the gastrointestinal tract have been expanded by recent studies which suggest that GABAergic neurones are not confined solely to the central nervous system but may also exist in the vertebrate peripheral autonomic nervous system. Jessen and coworkers have demonstrated the presence, synthesis and uptake of GABA by the myenteric plexus of the guinea pig taenia coli, and have documented the presence of glutamic acid decarboxylase (GAD) in isolated myenteric plexus. This enzyme is responsible for the conversion of glutamic acid to GABA in GABAergic neurones. The possibility that GABA may have a role in neurotransmission or neuromodulation in the enteric nervous system of the vertebrate gut has been suggested by several investigators. Furthermore, GABA receptors have been demonstrated on elements of the enteric nervous system. The effects of GABA on gastrointestinal endocrine cell function have not been examined. We report here the effects of GABA on gastrin and somatostatin release from isolated rat antral mucosa in short-term in vitro incubations.  相似文献   

18.
Using immunohistochemical method and double staining technique, the localization of growth hormone (GH) and somatostatin receptors in the nervous system and Hatschek's pit of amphioxus has been investigated. The results showed that the growth hormone-like nerve cells and endocrine cells as well as three subtypes of somatostatin receptors exist in the nervous system and Hatschek s pit, and GH-like nerve cells and endocrine cells co-exist with three subtypes of somatostatin receptors in the brain vesicle and Hatschek s pit. It is suggested that a primitive control system of inhibitory growth hormone secretion in Hatschek s pit could have been developed in amphioxus, as in vertebrates. The present study provides new evidence for the endocrinology and the evolution of Hatschek's pit.  相似文献   

19.
J McCulloch  P A Kelly 《Nature》1983,304(5925):438-440
Vasoactive intestinal polypeptide (VIP) is present in high concentrations in the cerebral cortex, where it is the putative neurotransmitter of a major intracortical neuronal system. Homogenates of cortical tissue contain high-affinity, specific binding sites for VIP as well as an adenylate cyclase system which is sensitive to this peptide. As with many of the other peptidergic systems which have been identified in the central nervous system (CNS), it has proved extremely difficult to elucidate the nature and extent of the functional role of VIP in specific brain areas. Here, using the quantitative autoradiographic 14C-deoxyglucose technique in rats to provide insight into functional processes, we describe the increases in glucose utilization which occur locally in anterior cingulate cortex following the unilateral injection of VIP (20 pmol) into this key brain area and, additionally, the focal alterations in glucose use in CNS regions having known neuronal connections with the injected region (for example, ipsilateral mediodorsal thalamus, ventral tegmental area, nucleus accumbens, caudate nucleus and contralateral cingulate cortex). These data provide evidence that VIP may modify the processing of afferent and efferent information within the anterior cingulate cortex in the conscious rat.  相似文献   

20.
Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular β-amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer’s disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of β-amyloid can induce changes in the brain cholinergic system of the transgenic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号