首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
Ni–P electroless coating was applied on low carbon steel with the incorporation of different amounts of nano Al2O3 powder (ranging from 3 g/l to 30 g/l) in electroless bath. Corrosion properties and microstructures of the coating were studied. The dispersion stability of alumina colloidal particles stabilized by polymeric (non-ionic) surfactants in an electroless bath was also investigated. The surface morphology and the relevant structure were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Corrosion behavior of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results showed that increasing alumina concentration not only changed the surface morphology, but also promoted the corrosion resistance. Addition of surfactants has an indirect effect on the amount of the incorporated particles. Meanwhile, in the presence of surfactant, corrosion resistance of Ni–P coating containing even a small quantity of alumina was improved since a stabilized bath was obtained.  相似文献   

2.
Alumina nanoparticles were added to a Cu-Zn alloy to investigate their effect on the microstructural, tribological, and corrosion properties of the prepared alloys. Alloying was performed using a mixture of copper and zinc powders with 0vol% and 5vol% of α-Al nanopowder in a satellite ball mill. The results showed that the Cu-Zn solid solution formed after 18 h of mechanical alloying. The mechanically alloyed powder was compacted followed by sintering of the obtained green compacts at 750℃ for 30 min. Alumina nanoparticles were uniformly distributed in the matrix of the Cu-Zn alloy. The tribological properties were evaluated by pin-on-disk wear tests, which revealed that, upon the addition of alumina nanoparticles, the coefficient of friction and the wear rate were reduced to 20% and 40%, respectively. The corrosion properties of the samples exposed to a 3.5wt% NaCl solution were studied using the immersion and potentiodynamic polarization methods, which revealed that the addition of alumina nanoparticles reduced the corrosion current of the nanocomposite by 90%.  相似文献   

3.
Ternary mixed metal oxide coatings with the nominal composition IrxRu(0.6-x)Ti0.4O2(x=0, 0.1, 0.2, 0.3) on the titanium substrate were prepared by thermal decomposition of a chloride precursor mixture. Surface morphology and microstructure of the coatings were investigated by Scanning electron microscopy(SEM), Field emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) analysis. Systematic study of electrochemical properties of these coatings was performed by cyclic voltammetry(CV) and polarization measurements. The corrosion behavior of the coatings was evaluated under accelerated conditions(j=2 A cm-2) in acidic electrolyte. The role of iridium oxide admixture in the change of electrocatalytic activity and stability of Ru0.6Ti0.4O2coating was discussed. Small addition of IrO2can improve the stability of the RuO2+TiO2mixed oxide, while the electrocatalytic activity for oxygen evolution reaction(OER) is decreased. The shift of redox potentials for Ru0.6Ti0.4O2electrode that is slightly activated with IrO2and improvement in the stability can be attributed to the synergetic effect of mixed oxide formation.  相似文献   

4.
The present work investigates the hot-corrosion behavior of carbon nanotube (CNT)-reinforced chromium oxide coatings on boiler steel in a molten salt (Na2SO4-60wt%V2O5) environment at 700℃ under cyclic conditions. The coatings were deposited via the high-velocity oxygen fuel process. The uncoated and coated steel samples were subjected to hot corrosion in a silicon tube furnace at 700℃ for 50 cycles. The kinetics of the corrosion behavior was analyzed through mass-gain measurements after each cycle. The corrosion products were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis techniques. The results revealed that uncoated steel suffered spallation of scale because of the formation of nonprotective Fe2O3 scale. The coated steel samples exhibited lower mass gains with better adhesiveness of oxide scale with the steel alloy until the end of exposure. The CNT-reinforced coatings were concluded to provide better corrosion resistance in the hot-corrosion environment because of the uniform dispersion of CNTs in the coating matrix and the formation of protective chromium oxides in the scale.  相似文献   

5.
The aim of this study is to evaluate the effect of various molar ratios of glycine to chromium salt (Gly : Cr) and different current densities on the corrosion and wear behaviors of Cr(III) electroplated coatings. The morphology and thickness of the coatings were investigated by scanning electron microscopy. The wear properties of the coatings were studied using pin on disk and hardness tests, while corrosion behavior of the coatings was identified using linear polarization, small amplitude cyclic voltammetry, and electrochemical impedance spectroscopy methods. By increasing the glycine concentration, a structure with low crack density was obtained. In all molar ratios, maximum thickness and current efficiency was observed at a current density of 150 mA·cm?2. All the electrochemical methods had a consistent result, and maximum corrosion resistance of approximately 16000 Ω·cm2 was obtained in the case of Gly : Cr = 3:1 and current density of 200 mA·cm?2.  相似文献   

6.
This paper describes an investigation of the effect of ZrO2 nanoparticles on the abrasive properties, crystalline texture developments, and tribocorrosion behavior of Ni-P nanostructured coatings. In the investigation, Ni-P and Ni-P-ZrO2 nanostructured coatings are deposited on St52 steel via the electroless method. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), cyclic-static polarization tests in 3.5wt% NaCl solution, the tribocorrosion test (by back-and-forth wear in electrochemical cell), and the microhardness test using the Vickers method were performed to characterize and analyze the deposited coatings. The results of this study showed that the addition of ZrO2 nanoparticles to the Ni-P electroless bath produced the following:a sharp increase in wear and hardness resistance, the change of the wear mechanism from sheet to adhesive mode, the reduction of pitting corrosion resistance, significant reduction in the tribocorrosion protective properties, change in the preferred orientation of the crystalline texture coating from (111) to (200), increase in the sedimentation rate during the deposit process, and a sharp increase in the thickness of the Ni-P nanostructured coatings.  相似文献   

7.
In current research, in order to enhance the incorporation of nano-sized TiC particles into electroless Ni–P (EN) coating, different types of surfactant (cationic, anionic, and polymeric) were added to the plating bath. The effects of addition of the surfactants on surface morphology, deposition rate, TiC and P contents of the prepared coatings were investigated. The surface morphology was evaluated by scanning electron microscopy (SEM). It was demonstrated that in the presence of the anionic, polymeric and somehow cationic surfactants, TiC nano-particles were embedded in the matrix which influenced the surface morphology. The effect of surfactant types on the corrosion properties of Ni–P/TiC coated steel was also studied. Corrosion behavior of the coated steel was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) which affected by the incorporation of TiC particles into the Ni–P matrix. The level of corrosion resistance improvement depended largely on the phosphorous and TiC concentration of the applied coating.  相似文献   

8.
NiP-SiC (≈1 1wt% P) composite coatings were electroplated in a Brenner type plating bath. The coatings had amorphous nano-phase composite structure. Direct current and alternating current electrochemical tests were carried out on such coatings in a 3.5wt% solution of NaCl to evaluate their corrosion resistance. The potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) tests, and exposure experiments all show that the corrosion resistance of NiP-SiC coatings first increases and then decreases when the SiC content increases, but the corrosion resistance of NiP-SiC composite coating is better than that of amorphous NiP coatings.  相似文献   

9.
The present paper aims to investigate the influence of the current density in the electroplating process on the microstructure, crystal texture transformations, and corrosion behavior of Ni/Co-pumice multilayer nanocomposite coatings. The Ni/Co-pumice composite coatings were prepared by deposition of Ni, followed by the simultaneous deposition of pumice nanoparticles (NPs) in a Co matrix via an electroplating process at various current densities. Afterward, the morphology, size, topography, and crystal texture of the obtained samples were investigated. Furthermore, electrochemical methods were used to investigate the corrosion behavior of the produced coatings in a solution of 3.5wt% NaCl. The results indicated that increasing the plating current density changed the mechanism of coating growth from the cell state to the column state, increased the coating thickness, roughness, and texture coefficient (TC) of the Co (203) plane, and reduced the amount of pumice NPs incorporated into the Ni/Co-pumice composite. The electrochemical results also indicated that increasing the current density enhanced the corrosion resistance of the Ni/Co-pumice composite.  相似文献   

10.
A MgAl-layered double hydroxide(MgAl-LDH) protective film was developed on AA6082 substrates via the in situ hydrothermal growth method to obtain a distinct cauliflower-like LDH structure, and coated substrates were further heat-treated in air at temperatures from 100 to 250℃ to further improve the corrosion resistance of MgAl-LDH by taking advantage of the LDH memory effect; also, the effect of calcination on MgAl-LDH structural stability and the corresponding corrosion resistance properties were investigated. The structural characterization of uncalcined and calcined LDH films were examined using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The corresponding corrosion protection efficiency of the developed coating was studied through potentiodynamic polarization experiments and by electrochemical impedance spectroscopy. Compared with uncalcined MgAl-LDH, the calcined film showed a relatively lower corrosion current density and a higher impedance value, especially after heat treatment at 250℃. The findings demonstrate that calcination strongly affects the oriented growth of the LDH and causes an increase in the surface area and contraction of the basal spacing, which in turn caused a compact structure that substantially influenced the LDH corrosion resistance properties.  相似文献   

11.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

12.
The electrocatalytic activity of electrodeposited Ni and Ni-TiO2 coatings with regard to the alkaline hydrogen evolution reaction (HER) was investigated. The Ni coatings were electrodeposited from an acid chloride bath at different current densities, and their HER activities were examined in a 1.0-mol·L-1 KOH medium. The variations in the HER activity of the Ni coatings with changes in surface morphology and composition were examined via the electrochemical dissolution and incorporation of nanoparticles. Electrochemical analysis methods were used to monitor the HER activity of the test electrodes; this activity was confirmed via the quantification of gases that evolved during the analysis. The obtained results demonstrated that the Ni-TiO2 nanocomposite test electrode exhibited maximum activity toward the alkaline HER. The surface appearance, composition, and the phase structure of all developed coatings were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), respectively. The improvement in the electrocatalytic activity of Ni-TiO2 nanocomposite coating toward HER was attributed to the variation in surface morphology and increased number of active sites.  相似文献   

13.
A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3/γ- and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.  相似文献   

14.
Aluminum (Al) 2024 matrix composites reinforced with alumina short fibers (Al2O3sf) and silicon carbide particles (SiCp) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al2O3sf on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al2O3sf, characterized by the ratio of Al2O3sf to SiCp, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al2O3sf to SiCp was increased from 0 to 1, the rate of wear mass loss (Km) and coefficients of friction (COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the Km increased rapidly and the wear mechanism became adhesive wear.  相似文献   

15.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

16.
The influence of Nd addition on the glass-forming ability (GFA), microhardness, and corrosion resistance of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25, at%) alloys were investigated by differential scanning calorimetry, Vickers-type hardness tests, and electrochemical methods. The results suggest that the GFA and microhardness of the amorphous alloys increase until the Nd content reaches 20at%. The corrosion potential and corrosion current density obtained from the Tafel curves indicate that the Mg35Cu40Nd25 ternary alloy exhibits the best corrosion resistance among the investigated alloys. Notably, nanoporous copper (NPC) was synthesized through a single-step dealloying of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25) ternary alloys in 0.04 mol·L-1 H2SO4 solution under free corrosion conditions. The influence of dealloying process parameters, such as dealloying time and temperature, on the microstructure of the ribbons was also studied using the surface diffusivity theory. The formation mechanism of dealloyed samples with a multilayered structure was also discussed.  相似文献   

17.
The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O2-H2O-CO2 environment at various temperatures and O2-CO2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100℃ and increased sharply when the temperature exceeded 100℃. In the absence of O2, X52, 3Cr, and 13Cr exhibited uniform corrosion morphology and FeCO3 was the main corrosion product. When O2 was introduced into the system, various forms of Fe2O3 appeared on the surface of the samples. The Cr content strongly influenced the corrosion resistance. The 3Cr steel with a low Cr content was more sensitive to pitting than the X52 or 13Cr steel. Thus, pitting occurred on the surface of 3Cr when 1.25 MPa of O2 was added; this phenomenon is related to the non-uniform distribution of Cr in 3Cr.  相似文献   

18.
采用循环伏安(CV)、动电位极化(Tafel)和电化学阻抗谱(EIS)技术、结合纯镁微弧氧化膜微观形貌,研究电压对膜层电化学腐蚀行为的影响.结果表明:电压对膜层耐蚀性影响显著,随着电压升高,膜层耐蚀性增强,这是因为较厚的膜层厚度为抵御腐蚀介质的侵蚀提供了良好的物理屏障.在整个腐蚀试验过程中,高电压下制备的膜层经历三个阶段:腐蚀介质逐渐渗入膜层,腐蚀介质渗透膜层到达膜基面侵蚀基体,腐蚀产物填充微孔和微裂纹等缺陷.相比而言,低电压下制备的膜层随着浸泡时间的延长,膜层外部疏松层和内部致密层的电阻均逐渐减小,致使耐蚀性降低,最终膜层完全失效.  相似文献   

19.
采用微弧氧化(MAO)技术在7050铝合金表面制备了陶瓷膜层,运用扫描电子显微镜(SEM)和能谱分析仪(EDS)表征陶瓷膜微观结构,采用动电位极化曲线、电化学阻抗谱(EIS)和慢应变速率拉伸试验(SSRT)研究了微弧氧化膜对7050铝合金在3.5%(质量分数)NaCl水溶液中腐蚀和应力腐蚀开裂(SCC)行为的影响.结果表明:微弧氧化膜层由表面疏松层与内部致密层组成,表面疏松层主要由Al2O3组成,内部致密层由氧化铝与铝烧结而成.微弧氧化膜层可以有效抑制7050铝合金表面的腐蚀萌生及明显降低腐蚀速率,且使7050铝合金的应力腐蚀敏感性出现显著下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号