首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
一种微带开路环双工器的设计   总被引:2,自引:0,他引:2  
介绍了一种高隔离度微带双工器的设计方法。该双工器由2个在通带附近具有一对传输零点的微带带通滤波器组成。分析了具有传输零点带通滤波器的设计方法,给出了中心频率为1.85GHz,分数带宽为10.5%和中心频率为2.15GHz,分数带宽为9%的微带开路环带通滤波器设计实例。利用微波CAD软件对连接双工器T型接头的微带尺寸进行了优化,仿真结果表明该双工器具有较好的频带响应及隔离度。  相似文献   

2.
具有阻带抑制特性的微带带通滤波器设计   总被引:2,自引:2,他引:0  
应用传输线理论分析了并联微带开路线产生传输零点的原理,设计了一个基于双模谐振器结构,中心频率为1.9 GHz、分数带宽为2%的改进型微带发夹式带通滤波器.仿真和实验结果较为一致,表明该类型的滤波器具有显著的上边阻带抑制特性,可以应用于高性能微波滤波器和双工器的设计中.  相似文献   

3.
提出一种新型的具有2个传输零点的微带带通滤波器(bandpass filter, BPF).该滤波器采用2个新型慢波谐振器,具有较宽的上阻带带宽.该滤波器设计简单,由于利用"N+2”耦合矩阵的方法而呈现出较高的频率选择性.测量结果表明,该滤波器具有良好的响应特性,在中心频率2.4 GHz处的插入损耗为1.66 dB,上阻带频率达到7.0 GHz.实测和仿真结果具有良好的一致性.  相似文献   

4.
为了得到高选择性、小尺寸、低损耗和低成本的射频带通滤波器,提出了一种具有4个传输零点的源–负载耦合滤波器的设计方法.该滤波器采用二分之一波长T形多模谐振器,以减小滤波器尺寸和方便带宽设计.同时,根据信号的多路径传输产生零点原理,在滤波器的输入和输出端口之间加入可控耦合元件,为信号的传输提供多条路径,使得该滤波器可产生4个独立于带宽和中心频率的可控零点.文中最后设计和制作了一个带内最小测量插损为1.4dB、相对带宽为10%、具有4个传输零点的小型微带滤波器,并对其进行了测试,测试结果与仿真结果吻合良好,说明这种设计方法是有效的.  相似文献   

5.
刘曦  王凯源 《科技信息》2011,(9):I0082-I0084
本文借助LTCC的多层结构,先设计出了带传输零点的带通滤波器(BPF)。并通过匹配网络,利用HFSS仿真软件对其参数进行优化仿真,设计出了一种基于LTCC技术的S波段双工器。该双工器尺寸为18.3mm×15.6mm×0.5mm、在2.03GHz和2.19GHz处的插入损耗小于-3.72dB。在频率1.87GHz和2.34GHz处衰减大于-55dB,有效的抑制了阻带上的本振信号及其镜象信号。S13小于-12dB,体现了两端口之间的良好的隔离度,满足了该双工器设计指标和小型化的目的。  相似文献   

6.
提出了一种紧凑的零度馈电的具有分支线加载的具有3个传输零点的微带双带通滤波器。首先完成了中心频率2.4 GHz的微带单带通滤波器设计,再次完成了加载分支线的优化仿真设计,最终实现了2.4/3.5 GHz微带双通带滤波器,实测和仿真结果吻合较好,实测得到了的第一、二通带相对带宽大于5%,第一通带内插损小于1.5dB,第二通带内插损小于3 dB。提出的分支加载的微带双带通滤波器具有设计简单、结构紧凑、很好的选择性等优点,可以满足无线局域网(WLAN)系统和固定无线接入(FWA)通信需要。  相似文献   

7.
利用基片集成波导的高通传输特性以及光子带隙结构的阻带特性,构建了一种新型结构的基片集成波导带通滤波器。为了验证该想法,设计了1个中心频率为5.0GHz,分数带宽为60%的滤波器,电磁仿真结果表明该滤波器在频率为3.5~6.5GHz频率范围内具有明显的通带特性,带内最大插入损耗约为0.64dB.利用PCB工艺制作了该滤波器的实物,使用矢量网络分析仪对其进行了测试,测试结果表明该滤波器的通带为3.8~6.8GHz,分数带宽约为56%,带内最小插入损耗为1.6dB。电磁仿真结果和实际测试结果较一致。  相似文献   

8.
设计一种新型的微带滤波器,该滤波器由5个微带发卡单元构成,中心频率为2.4 GHz,利用相邻谐振器之间的耦合特性,在通频带上、下边沿分别插入一个传输零点;同时将二次谐波推向更高的频段,离开中心频率近3.5 GHz.仿真结果表明,该设计既提高了带内性能,使得通频带的边沿非常陡峭,同时又抑制了二次谐波.实测结果表明,该滤波器实现了谐波抑制,且没有出现频偏现象,与仿真结果基本吻合,但带内性能有待于提高.  相似文献   

9.
利用基片集成波导的高通传输特性以及蝶型光子带隙结构的阻带特性,构建了一种新型结构的基片集成波导带通滤波器.为了验证该想法,设计了1个中心频率为4.65GHz,分数带宽为40%的滤波器,电磁仿真结果表明该滤波器在频率为3.71~5.6GHz范围内具有明显的通带特性,带内最大插入损耗约为0.4dB.利用PCB工艺制作了该滤波器的实物,使用矢量网络分析仪对其进行了测试,测试结果表明该滤波器的通带为3.78~5.76GHz,分数带宽约为41%,带内最小插入损耗为0.72dB,最大插入损耗为1.65dB.电磁仿真结果和实际测试结果较一致。  相似文献   

10.
基于微带SIR的特性,提出了一种紧凑的微带多耦合带通滤波器结构,介绍了通过控制微带SIR谐振器的阻抗比值来调整二阶通带中心频率的位置,从而实现二阶杂波抑制和改善滤波器上边阻带衰减特性的原理.最后设计了一个中心频率为3.65 GHz,分数带宽约为3.5%的微带多耦合SIR带通滤波器,仿真表明其频率响应在1阶杂波频点处有-10 dB左右的衰减,使得滤波器在上边阻带的衰减更陡峭,通带更对称.制作的电路在中心频率处的插入损耗测试结果为-3.2 dB,带宽大约为120 MHz,和仿真结果比较一致.  相似文献   

11.
提出一种应用于5G无线通信的周期结构微带带通滤波器设计方法。在周期结构低通滤波器的矩形环中靠近电路中心一侧加载金属过孔,使其在截止频率附近发生谐振,以形成中心频率位于截止频率附近的带通滤波器。通过调整金属过孔的位置,实现带通滤波器带宽的控制,并且在矩形环偏离电路中心一侧连接矩形金属贴片,通过调整矩形金属贴片的尺寸可以适当调整滤波器的中心频率,而不改变滤波器的整体尺寸。实验测试结果表明,该滤波器的中心频率为3.33 GHz,3 dB相对带宽为6.9%。其带外抑制特性较好,具有较低的插损,适用于5G无线通信系统。  相似文献   

12.
采用开路短路枝节加载开环谐振器,设计了一种新型的3个通带中心频率独立可调的三频带通滤波器.由于谐振器的结构对称,因此采用传统的奇偶模分析法.滤波器的第一和第三通带由偶模谐振频率产生,通过改变加载枝节的电长度和阻抗比可调节偶模谐振频率.滤波器的第二通带由奇模谐振频率产生,通过改变环的电长度和阻抗可调节奇模谐振频率.该滤波器的3个通带中心频率为1.57GHz(GPS),2.4GHz (WLAN)和3.5GHz (WIMAX), 3dB带宽分别为2.5%, 4.7%和2.0%,测量结果与电磁仿真结果基本吻合.  相似文献   

13.
研究一种小型化超宽带微带带通滤波器。该滤波器采用2个开路枝节线和2个短路枝节线,其中开路枝节和短路枝节两两组成枝节线对。在2个枝节线对之间,利用一段均匀微带线进行连接。滤波器的输入输出采用直接馈电的设计,以保证宽带滤波器所需的强耦合。通过对该滤波器的参数进行仿真研究,设计实现了一个带宽在110%左右的超宽带滤波器。试制样品的测试结果与仿真结果吻合良好,表明该滤波器在中心频率为1.90GHz时,可实现103oA的相对带宽。通带内的最小插入损耗为0.20dB(在1.52GHz处),匹配均优于-20dB。第一个寄生通带的频率高于6GHz,是中心频率的3.2倍左右,而且该滤波器的电尺寸小,在其通带中心频率处,只有0.21×0.18λg^2  相似文献   

14.
在传统1/4波长阶跃阻抗谐振器(step impedance resonator,SIR)的基础上,提出一种新型双频宽带带通滤波器(bandpass filter,BPF)的结构及其设计方法,其中心频率为1.90/5.65 GHz,可工作于GSM等无线通信系统中.该滤波器频率覆盖范围广,带宽宽,其第一频段的绝对带宽为980 MHz,第二频段的绝对带宽为960 MHz.该滤波器在基频1.90 GHz的回波损耗低于-25 dB,插入损耗为-0.012 dB.同时,滤波器的两通带隔离度好,结构简单,易于加工.频率响应特性S11和S21的电磁仿真和实测结果非常吻合.  相似文献   

15.
针对传统带阻单元构成滤波器存在陷波深度不足和阻带抑制较差的问题,提出一种加载开路枝节的多陷波超宽带滤波器。基于开路枝节线和阶跃阻抗谐振器理论,通过在超宽带滤波器多模谐振器上引入一对折叠开路枝节线产生2个陷波频段,这种特殊枝节实现的陷波抑制能力更强;在超宽带结构下方耦合阶跃阻抗谐振器产生第3个陷波频段,陷波深度更好。最终实现超宽带带通滤波器的中心频率为6.6 GHz,陷波频段相对带宽约为134%。仿真与实测结果表明,该滤波器工作带宽为2.2~11.2 GHz,实现了2.8~4.4 GHz,6.2~6.8 GHz和8.8~9.8 GHz 3个频段的陷波特性,可有效滤除C波段和WLAN频段信号对超宽带通信系统的干扰。满足超宽带系统对陷波滤波器插入损耗和带外抑制的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号