首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
介绍了一种带隙基准参考电路结构,采用二阶曲率补偿技术,通过增加一正温度系数项补偿电路中Vbe(T)展开的负温度系数对数项,改善了基准参考电压源的温度稳定性.文中给出了详细的分析和电路实现,经Hspice仿真表明,其温度系数为10ppm/℃.  相似文献   

2.
给出一款带曲率补偿的CMOS带隙基准源电路,该电路利用双极性晶体管电流增益β与温度的指数关系对带隙基准曲率进行补偿,以简单的电路结构获得低的温度系数.电路采用CSMC0.5μm 2P3M mixed signalCMOS工艺设计,Cadence Spectre仿真结果显示,在3.6V的电源电压、-40~85℃范围内,基准源的温度系数为5.0×10-6/℃.  相似文献   

3.
普通的一阶补偿带隙基准因忽略了VBE的高阶非线性项,其温度系数一般在20×10-6~30×10-6/℃,不能满足高精度系统的设计要求,因此为了得到温度系数更好的基准电压,需要对带隙基准中VBE的高阶项进行补偿。文章利用工作在亚阈值区MOS管的I-V指数特性,分别对低温及高温条件下VBE的高阶非线性项进行了补偿,从而实现了高精度基准电压。  相似文献   

4.
设计了一种高阶曲率补偿的带隙电压基准.基于一阶曲率补偿的带隙电压基准,利用三极管基极发射极电压VBE与温度T的非线性关系,将温度特性为k1T k2TlnT的电压与一阶曲率补偿后的带隙电压相加.运用Cadence工具、TSMC 0.35 μm工艺和器件模型进行了仿真,工作电压为3 V,在-50~150 ℃宽温度范围内,一阶曲率补偿带隙电压基准的温度系数为 13 ppm/℃,而运用高阶曲率补偿后带隙电压基准的温度系数减少到 3.1 ppm/℃.  相似文献   

5.
一种二阶补偿的CMOS带隙基准电压源   总被引:4,自引:0,他引:4  
提出了一种通过沟道长度调制效应进行二阶温度曲率补偿的CMOS带隙基准电压源,并分析了这种结构实现二阶温度曲率补偿成立的条件。采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,在-50°~+120℃温度范围内,一阶曲率补偿的温度系数为9.5 ppm/℃,而运用二阶曲率补偿后该基准电压源具有2.7 ppm/℃的低温度系数。  相似文献   

6.
提出了一种新颖的利用负反馈环路以及RC滤波器提高电源抑制比的高精密CMOS带隙基准电压源.采用上海贝岭的1.2μm BiCMOS工艺进行设计和仿真,spectre模拟表明该电路具有较高的精度和稳定性,带隙基准的输出电压为1.254V,在2.7V-5.5V电源电压范围内基准随输人电压的最大偏移为0.012mV,基准的最大静态电流约为11.27μA;当温度-40℃-120℃范围内,基准温度系数为1mV;在电源电压为3.6V时,基准的总电流约为10.6μA,功耗约为38.16μW;并且基准在低频时具有100dB以上的电源电压抑制比(PSRR),基准的输出启动时间约为39μs.  相似文献   

7.
为降低传统双极结型晶体管(Bipolar Junction Transistor, BJT)型带隙基准源温度系数高的问题,提出了一种带有高阶曲率补偿的带隙基准电压源,极大降低了带隙基准源的温度系数.设计基于传统BJT型带隙基准电路,采用高阶曲率补偿电路对温度系数进行优化,并采用折叠式cascode运算放大器和自偏置cascode电流镜对输入电压范围进行优化.设计的带隙基准源具有低温度系数、高电源电压抑制比、结构简单的优点,是各类片上系统的优良选择.  相似文献   

8.
在传统电流求和模式带隙基准电压源的基础上进行改进,设计了一种简单的三阶曲率补偿带隙基准电压源。该基准源由启动电路、低压高增益两级运算放大器、基准核心电路和高阶曲率补偿电路组成。在低温段,通过PMOS管进行二阶补偿;在高温段,通过PTAT2电流进行三阶补偿。基于CSMC 0.35μm CMOS工艺,采用Cadence软件对设计电路进行仿真分析。结果表明,在-40~125℃温度范围内,5 V电源电压下,基准源输出电压为1.226V,输出电压变化范围为0.51mV,基准源的温度系数为2.5×10-6/℃,低频时的电源抑制比为-67 dB。  相似文献   

9.
本文基于Brokaw基准电压源结构,设计了一种二阶温度补偿的带隙基准源。采用UMC 0.6um BCD工艺,实现-40100℃的温度范围下,相对温度系数为3.53ppm/℃。  相似文献   

10.
采用分段曲率补偿的新型带隙基准电压源设计   总被引:1,自引:0,他引:1  
宗永玲  陈中良 《河南科学》2014,(8):1467-1469
设计了一种利用MOS晶体管产生正负温度系数电流的新型带隙基准电压源,并采用分段曲率补偿技术,从而降低基准电压的温度系数,同时增加工作温度范围.该电路使用TSMC 0.6 um标准CMOS工艺进行设计,Spectre仿真结果表明,电源电压为1.5 V,温度范围为-15~95℃时,温度系数为107 ppm/℃,采用分段曲率补偿后,温度系数降为4.28 ppm/℃.  相似文献   

11.
介绍了一种基于CSMC0.5-μm2P3Mn-阱混合信号CMOS工艺的高阶温度补偿的带隙参考源。该CMOS带隙参考源利用了Buck电压转换单元和与温度无关的电流,提供了一种对基极-发射极电压VBE的高阶温度补偿。它还采用共源共栅结构以提高电源抑制比。在5 V电源电压下,温度变化范围为-20 ~100℃时,该带隙参考源的温度系数为5.6 ppm/℃。当电源电压变化范围为4 ~6 V时,带隙参考源输出电压的变化为0.4 mV。  相似文献   

12.
介绍了一种基于CSMC 0.5-μm 2P3M n-阱混合信号CMOS工艺的高阶温度补偿的带隙参考源。该CMOS带隙参考源利用了Buck电压转换单元和与温度无关的电流,提供了一种对基极-发射极电压V_BE的高阶温度补偿。它还采用共源共栅结构以提高电源抑制比。在5V电源电压下,温度变化范围为-20~100℃时,该带隙参考源的温度系数为5.6ppm/℃。当电源电压变化范围为4~6V时,带隙参考源输出电压的变化为0.4mV。  相似文献   

13.
典型的帶隙基准电压源电路是由CMOS工艺产生的具有负温度系数的寄生横向BJT的发射结电压VEB和具有正温度系数的热电压Vt 相补偿产生零温度系数的基准帶隙电压源。但是VEB与温度不是线性关系, 因此VREF需要被校正。本文介绍了一种高精度自偏置多段二次曲率补偿的CMOS帶隙基准电压源。采用0.5 m CMOS工艺、工作电压为3.3V,该芯片室温下功耗为94W。设计在0 oC—75 oC有效温度系数达到了0.7ppm/oC。  相似文献   

14.
为获得一个稳定而精确的基准电压,提出了一种适用于低电源电压下高阶曲率补偿的电流模式带隙基准源电路,通过在传统带隙基准源结构上增加一个电流支路,实现了高阶曲率补偿。该电路采用Chartered 0.35μm CMOS工艺,经过Spectre仿真验证,输出电压为800mV,在-40~85℃温度范围内温度系数达到3×10^-6℃^-1,电源抑制比在10kHz频率时可达-60dB,在较低电源电压为1.7V时电路可以正常启动,补偿改进后的电路性能较传统结构有很大提高.  相似文献   

15.
利用有源PMOS负载反相器组成电压减法器,将电源噪声引入运放反馈,得到了一种高电源抑制比的基准电压源。对基准源的低频电源噪声抑制进行了推导和分析。仿真结果表明,在3 V电源电压下,在-40~85℃范围内,温度系数低于1.976 ppm/℃;在27℃下,1 KHz时,电源抑制比达88 dB.  相似文献   

16.
基于0.18μm BCD工艺,设计了一种新颖的低温漂高电源抑制比(PSRR)的带隙基准源电路。基准核心电路采用自偏置结构,简化了电路的设计。在不显著增加电路功耗与面积的前提下,通过引入预调节电路极大地提高了电路的PSRR。基准源输出采用负反馈结构,进一步提升了PSRR。Hspice软件仿真结果表明:在-40~150℃温度范围变化时,基准输出电压变化为283μV,温度系数仅为1.18×10-6(ppm)/℃;基准的稳定输出电压为1.257 V;电源电压在3~6 V范围变化时,线性调整率为0.082 m V/V;5 V电源电压下,低频时电源电压抑制比为130 d B,在100 k Hz时也能高达65 d B。电路整体功耗为0.065 m W,版图面积为63μm×72μm。  相似文献   

17.
为消除运算放大器失调电压对带隙电压精度的影响,采用NPN型三极管产生ΔVbe,并设计全新的反馈环路结构产生了低压带隙电压.电路采用SMIC 0.18μm CMOS工艺实现,该新型低压带隙基准源设计输出电压为0.5V,温度系数为8ppm/℃,电源抑制比达到-130dB,并成功运用于16位高速ADC芯片中.  相似文献   

18.
一种适应于低电压工作的CMOS带隙基准电压源   总被引:1,自引:0,他引:1  
采用0.5μm标准的CMOS数字工艺,设计了一种适用于低电压工作的带隙基准电压源.其特点为通过部分MOS管工作在亚阈值区,可使电路使用非低压制造工艺,在1.5 V的低电源电压下工作.该电压源具有结构简单、低功耗以及电压温度稳定性好的特点.模拟结果表明,其电源抑制比可达到88 db,在-40~140℃的范围内温度系数可达到1.9×10-5/℃,电路总功耗为37.627 5 μW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号