首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
癫痫是由脑部神经元异常同步或过度放电导致的一种慢性脑部疾病。在神经系统疾病中,癫痫已成为仅次于脑血管病的第二大严重威胁人类健康的疾病,且其发病机制至今未明。表观遗传机制是调节基因表达的一种方式,其中组蛋白修饰是主要的表观遗传修饰之一。组蛋白修饰的异常与癫痫的发生发展密切相关,本文对组蛋白修饰与癫痫的关系进行综述,以期从组蛋白修饰的角度阐明两者之间的关系,为癫痫的防治提供新思路。  相似文献   

2.
正表观遗传是指在不改变基因的核苷酸序列的情况下,基因表达性状的可遗传性。表观遗传信息往往通过DNA甲基化、组蛋白修饰和非编码RNA等信息进行传递,对基因的表达调控起重要作用,与机体发育和人类健康密切相关。表观遗传信息由特定的蛋白酶加载,并被特定的结合蛋白识别发挥后续效应,或者被相应的酶去除。表观遗传信息的读写异常与人类的多种疾病相关,因此,研究相关蛋白质复合物的分子机制将为揭示表观遗传调控的奥秘,以及靶向这些蛋白异常导致的人类疾病提供重要分子基础。王占新研究组主要致力于表观遗传信息的修饰以及读取过程中参与的蛋白质复合物分子机制的研究。在高等动物中,表观遗传信息往往是加载在核小体上的,  相似文献   

3.
人消化道肿瘤的表观遗传学研究   总被引:1,自引:0,他引:1  
肿瘤的发生机制中有遗传学说和表观遗传学说.后者研究的主要内容包括DNA甲基化修饰和组蛋白的各种修饰.消化道肿瘤的发生发展存在表观遗传修饰的异常,如癌基因的低甲基化和抑癌基因的高甲基化,也同时存在着组蛋白乙酰化等修饰的紊乱.通过干预表观遗传修饰防治消化道肿瘤具有广阔的应用前景.  相似文献   

4.
表观遗传学研究进展   总被引:1,自引:0,他引:1  
 概述了表观遗传调节模式、表观遗传调节的效应、植物表观遗传学的研究进展等。在每种细胞中,都会发生一部分特异基因激活、另一部分基因抑制的现象,形成多种基因表达模式。表观遗传指DNA序列不发生变化,而基因表达发生可遗传改变的现象。表观遗传学改变包括DNA甲基化、组蛋白修饰、非编码RNA作用等,产生基因组印记、母性影响、基因沉默、核仁显性、休眠转座子激活等效应。表观遗传变异是环境因素和细胞内遗传物质间交互作用的结果,其效应通过调节基因表达,控制生物学表型来实现。正是因为表观修饰对于维持生物体内环境和各器官系统功能的重要性,表观遗传的异常会引发疾病,这也成为药物和治疗方案设计的着眼点。  相似文献   

5.
表观遗传包括通过DNA甲基化、组蛋白修饰、染色质重塑和RNA干扰等,通过这些机制干扰了正常基因的功能。越来越多的研究表明,DNA甲基化和组蛋白修饰异常,在多种肿瘤的发生中起重要作用。本文对表观遗传的分子机制,和同肿瘤发生的关系,以及肿瘤的表观治疗策略作了详细的综述。  相似文献   

6.
综述了在恐惧记忆发生过程中DNA甲基化可能的作用机制,指出了中枢神经系统DNA甲基化的改变可以调控基因转录和海马神经发生,甚至通过精子DNA甲基化水平的改变传递给后代,从而参与恐惧记忆的表观遗传修饰.临床研究表明:人类确实存在创伤后应激障碍的代际遗传现象,结合分子生物学的研究成果.探讨了未来有望在创伤后应激障碍等精神疾病诊治上取得的进展.  相似文献   

7.
正研究人员已经发现,不良饮食对健康的影响能在不发生DNA突变的情况下,通过卵子和精子细胞遗传给后代。一项日前发表于《自然-遗传学》杂志的小鼠研究,则为生物体后天获得特征的非基因遗传提供了一些迄今最强力的证据。而且,尽管此前研究表明,精子细胞能携带表观遗传因子,但这是首次在卵子细胞中观察到此类影响。科学家早就怀疑,父母的生活方式和行为选择会通过表观遗传学影响孩子的健康。而对DNA  相似文献   

8.
正研究称饥饿感也"遗传"7月17日,美国哥伦比亚大学医学中心研究人员在Cell上发文称,饥饿感也可能会通过上一辈传承到下一辈,影响后代的健康。研究员Oliver HobertOliver Hobert指出,饥饿的妇女在饥荒期间生下的孩子,非常容易发生肥胖和其他代谢紊乱,并且他们的孙子也会出现这种情况。对照动物实验也发现了类似的结果,涉及大鼠的研究表明,父辈的长期高脂饮食会导致雌性后代肥胖。随后,Hobert的研究小组又进行了实验,他们将蛔虫饿了6天之后,检查其  相似文献   

9.
由发育和胁迫条件所导致的基因表达的变化通常依赖于DNA的甲基化修饰、组蛋白修饰、染色质结构以及小RNA等表观修饰。大量研究表明,这种表观修饰在胁迫条件下植物基因的表达中起非常重要的作用。大部分这种由胁迫诱导产生的修饰变化在胁迫条件被解除后能重新回到原来的水平,也有一些修饰的变化十分稳定,这些修饰变化作为"胁迫记忆"可以通过有丝分裂和减数分裂被遗传。表观遗传的应激记忆可能帮助植物更有效地应对以后的胁迫。  相似文献   

10.
 组蛋白甲基化修饰对遗传信息解读有着重要影响,是表观遗传调控的主要机制之一。组蛋白甲基化可以被一类称作"阅读器"的结构域所特异识别并介导下游生物学事件。本文综述了目前已知的组蛋白甲基化阅读器(包括"皇室家族"成员、PHD锌指及BAH 等结构域)的结构特征及其对于甲基化修饰位点和程度特异性识别的分子基础。另外,探讨了表观遗传修饰调控中的组合识别、修饰对话等概念与机制。  相似文献   

11.
DNA甲基化作为一种重要的表观遗传修饰,在生长发育、基因调控、染色质结构、分子印记以及许多疾病中起着至关重要的作用.随着各种测序技术的不断发展产生了大量的DNA甲基化数据,对其数据进行分析是目前DNA甲基化研究的一个热点和难点.目前针对于DNA甲基化数据的研究主要体现在基因组的局部区域上,而针对全基因组的分析则无法直观表现.为了更加直观的分析同一位点不同修饰信号的DNA甲基化数据间的差别,本文采用了一种专门针对表观遗传研究的数据库—WashU Epigenome Browser,针对人类表观遗传学药物数据库(HEDD)中的疾病数据,可视化的分析不同修饰信号间的差异并用数据波峰图来解释说明.  相似文献   

12.
胚胎干细胞(ESCs)来源于早期胚胎内细胞群,具有分化和发育多能性和无限增殖与更新能力。组蛋白修饰对ES细胞的自我更新和无限增殖能力及多能性保持具有重要作用。组蛋白修饰是表观遗传调控的关键因素,细胞通过表观遗传状态改变控制基因的选择性表达,实现对细胞分化的调控。并且可以建立调控网络调节ES细胞多能性维持。  相似文献   

13.
血管衰老是伴随年龄增长而出现的血管结构和功能的改变,主要包括血管重塑、血管稳态失衡以及血管细胞的衰老.表观遗传调控是在不改变DNA序列的情况下改变基因的表达,其主要机制包括DNA甲基化、组蛋白修饰以及非编码RNA的调控等.目前的研究表明各种表观遗传调控途径参与血管衰老的各个层面,在血管衰老及相关疾病的发生发展中扮演重要角色.靶向表观遗传调控的药物有望成为衰老相关疾病新的治疗方向.  相似文献   

14.
从DNA甲基化、组蛋白修饰的形成条件及其作用机制等方面,对表观遗传学的一些常见的发生机制进行了简要综述,并对表观遗传在水稻中研究的前景作了展望.  相似文献   

15.
表观遗传学是指基因组DNA序列不发生改变的情况下,基因表达水平发生变化从而导致的可遗传表型变化的现象.表观遗传可通过与低氧诱导因子(HIF)家族协同作用,以促使细胞适应低氧环境,从而参与到低氧应答的调控过程中.现就表观遗传学通过以下四个方面与低氧应答进行综述:1)VHL与PDH3调控HIF稳定性;2)通过影响HIF-1α共激活复合物的活性、HRE位点的修饰、HIF结合位点或附近区域的染色质活性,阻止HIF与HRE位点结合;3)组蛋白脱甲基酶对低氧应答相关基因的转录调控;4)低氧环境引起细胞内整体的组蛋白修饰程度和DNA甲基化水平改变.  相似文献   

16.
肥胖、糖尿病都是代谢性疾病,会引起一系列并发症,严重危害人体健康.其病因可能是遗传和环境共同作用的结果,糖脂代谢和肠道菌群是其中的重要环境因素.糖脂代谢紊乱会引起肥胖、糖尿病,不当饮食也会导致患者的糖脂代谢紊乱加剧,通过人为改变糖类、脂肪和蛋白质的配比进行营养干预,可调节自身糖脂代谢水平以达到缓解病症和治疗的目的.此外...  相似文献   

17.
DNA甲基化作为重要的表观遗传修饰,在动植物生长发育过程中发挥着重要作用,一直是表观遗传学的研究热点.然而,有关DNA甲基化在昆虫生长发育及环境响应过程中的功能及调控机制尚不明确.针对目前已鉴定到的昆虫DNA甲基转移酶的种类及其结构、DNA甲基化作用方式及调控机制、昆虫DNA甲基化相关研究方法等进行综述,以期为后续深入了解昆虫及其他节肢动物的表观遗传调控机制提供参考.  相似文献   

18.
自从2009年第三代DNA测序技术平台商业化以来,测序、绘制原核DNA甲基化组飞速发展,10余年来已完成甲基化组测序的细菌超过4 000种,极大推动了原核表观遗传学的研究.越来越多的研究表明,DNA甲基化修饰不仅仅局限于宿主的防御功能,而且广泛参与各种细胞过程及基因的表达调控,在染色体的复制起始、细胞周期、致病性、抗生素抗性等方面起到了重要的作用.在简要回顾原核DNA甲基转移酶及其甲基化修饰的相关研究的基础上,着重对近期原核甲基化修饰的调控作用的研究进展进行综述,以期推动原核甲基化修饰表观遗传的研究.  相似文献   

19.
 组蛋白修饰作为重要的表观遗传修饰,在调控胚胎基因表达、胚胎细胞的命运决定及胚胎基因组的稳定性等方面均起了很重要的作用。微量测序技术的发展使从全基因组水平上检测植入前胚胎的组蛋白修饰成为可能。综述了近年来利用该技术对小鼠早期胚胎发育过程中的组蛋白甲基化修饰研究的最新进展,总结了在胚胎基因激活及第一次细胞分化过程中组蛋白H3K4me3和H3K27me3修饰不同的建立和动态变化趋势,这些研究为探索胚胎发育和细胞分化的表观调控机制奠定了基础。  相似文献   

20.
组蛋白甲基化是表观遗传修饰方式中的一种,参与异染色质形成、基因印记、X染色体失活和基因转录调控。组蛋白甲基化过程的异常参与多种肿瘤的发生。既往认为组蛋白甲基化是稳定的表观遗传标记,然而最近许多组蛋白特异性去甲基化酶的发现对这一观点提出了挑战。JHDM1是第一个被发现含有JmjC结构域的组蛋白去甲基化酶,它能够特异性地除去H3赖氨酸36位二甲基化和一甲基化修饰,但是不能去除H3赖氨酸36位三甲基化修饰。为了从分子水平上揭示JHDM1的去甲基化催化机理,我们解析了hJHDM1A及其与α-酮戊二酸复合的晶体结构。结构比较揭示α-酮戊二酸的结合能够稳定围绕活性中心的柔性环,这一构像变化对于hJHDM1A发挥去甲基化活性是非常重要的。结合突变试验结果,我们提出了底物的潜在结合位点,结构分析也揭示高度保守的S145对于区分不同的赖氨酸甲基化程度起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号