首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ADAM proteases: ligand processing and modulation of the Notch pathway   总被引:1,自引:0,他引:1  
ADAM metalloproteases play important roles in development and disease. One of the key functions of ADAMs is the proteolytic processing of Notch receptors and their ligands. ADAM-mediated cleavage of Notch represents the first step in regulated intramembrane proteolysis of the receptor, leading to activation of the Notch pathway. Recent reports indicate that the transmembrane Notch ligands also undergo ADAM-mediated processing in cultured cells and in vivo. The proteolytic processing of Notch ligands modulates the strength and duration of Notch signals, leads to generation of soluble intracellular domains of the ligands, and may support a bi-directional signaling between cells.  相似文献   

2.
Tlx3 (HOX11L2) is regarded as one of the selector genes in excitatory versus inhibitory fate specification of neurons in distinct regions of the nervous system. Expression of Tlx3 in a post-mitotic immature neuron favors a glutamatergic over GABAergic fate. The factors that regulate Tlx3 have immense importance in the fate specification of glutamatergic neurons. Here, we have shown that Notch target gene, Hes-1, negatively regulates Tlx3 expression, resulting in decreased generation of glutamatergic neurons. Down-regulation of Hes-1 removed the inhibition on Tlx3 promoter, thus promoting glutamatergic differentiation. Promoter–protein interaction studies with truncated/mutated Hes-1 protein suggested that the co-repressor recruitment mediated through WRPW domain of Hes-1 has contributed to the repressive effect. Our results clearly demonstrate a new and unique role for canonical Notch signaling through Hes-1, in neurotransmitter/subtype fate specification of neurons in addition to its known functional role in proliferation/maintenance of neural progenitors.  相似文献   

3.
Notch cell interaction mechanism governs cell fate decisions in many different cell contexts throughout the lifetime of all Metazoan species. It links the fate of one cell to that of its neighbors through cell-to-cell contacts, and binding of Notch receptors expressed on one cell to their membrane bound ligands on an adjacent cell. Environmental cues, such as growth factors and extracellular matrix molecules, superimpose a dynamic regulation on this canonical Notch signaling pathway. In this review, we will focus on Notch signaling in the vertebrate vascular and nervous systems and examine its role in angiogenesis, neurogenesis, and neurovascular interactions. We will also highlight the molecular relationships of the Notch pathway with vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors, key regulators of both angiogenesis and neurogenesis.  相似文献   

4.
The role of endocytosis in activating and regulating signal transduction   总被引:1,自引:1,他引:0  
Endocytosis is increasingly understood to play crucial roles in most signaling pathways, from determining which signaling components are activated, to how the signal is subsequently transduced and/or terminated. Whether a receptor-ligand complex is internalized via a clathrin-dependent or clathrin-independent endocytic route, and the complexes' subsequent trafficking through specific endocytic compartments, to then be recycled or degraded, has profound effects on signaling output. This review discusses the roles of endocytosis in three markedly different signaling pathways: the Wnt, Notch, and Eph/Ephrin pathways. These offer fundamentally different signaling systems: (1) diffusible ligands inducing signaling in one cell, (2) membrane-tethered ligands inducing signaling in a contacting receptor cell, and (3) bi-directional receptor-ligand signaling in two contacting cells. In each of these systems, endocytosis controls signaling in fascinating ways, and comparison of their similarities and dissimilarities will help to expand our understanding of endocytic control of signal transduction across multiple signaling pathways.  相似文献   

5.
6.
7.
A central mechanism in activation of the Notch signaling pathway is cleavage of the Notch receptor by ADAM metalloproteases. ADAMs also cleave Delta, the ligand for Notch, thereby downregulating Notch signals. Two ADAMs, Kuzbanian (Kuz) and TNF-alpha converting enzyme (TACE), are known to process both Delta and Notch, yet the role of these cleavages in signal propagation has remained controversial. Using an in vitro model, we show that Kuz regulates Notch signaling primarily by activating the receptor and has little overall effect on signaling via disabling Delta. We confirm that Kuz-dependent activation of Notch requires stimulation of Notch by Delta. However, over-expression of Kuz gives ligand-independent Notch activation. In contrast, TACE, which is elevated in expression in the developing Drosophila nervous system, can efficiently activate Notch in a ligand-independent manner. Altogether, these data demonstrate the potential for Kuz and TACE to participate in context- and mechanism-specific modes of Notch activation.  相似文献   

8.
The highly conserved Notch signaling pathway plays pleiotropic roles during embryonic development and is important for the regulation of selfrenewing tissues. The physiological functions of this signaling cascade range from stem cell maintenance and influencing cell fate decisions of barely differentiated progenitor cells, to the induction of terminal differentiation processes, all of which have been found to be recapitulated in different forms of cancers. Although Notch signaling has mostly been associated with oncogenic and growth-promoting roles, depending on the tissue type it can also function as a tumor suppressor. Here we describe recent findings on Notch signaling in cancer and tumor angiogenesis, and highlight some of the therapeutic approaches that are currently being developed to interfere with tumor growth and progression. Received 2 April 2007; received after revision 29 June 2007; accepted 2 July 2007  相似文献   

9.
Recent discoveries revealing that carbohydrate modifications play critical roles in a wide variety of biological processes have brought wide recognition to the field of glycobiology. Growing attention has focused on the function of unusual O-linked carbohydrate modifications such as O-fucose. O-fucose modifications have been described in several different protein contexts, including epidermal growth factor-like repeats and thrombospondin type 1 repeats. The O-fucose modifications on thrombospondin type 1 repeats have only recently been described, but the site of modification occurs in a region proposed to play a role in cell adhesion. O-fucose modifications on epidermal growth factor-like repeats have been described as important players in several signal transduction systems. For instance, Notch, a cell-surface signaling receptor required for many developmental events, bears multiple O-fucose saccharides on the epidermal growth factor-like repeat of its extracellular domain. The O-fucose moieties serve as a substrate for the β1,3 N-acetylglucosaminyltransferase activity of Fringe, a known modifier of Notch function. The alteration of O-fucose structures by Fringe influences the ability of Notch ligands to activate the receptor and provides a means to regulate Notch signaling. Thus, O-fucose and Fringe provide a clear example of how carbohydrate modifications can have direct functional consequences on the proteins they modify. RID="*" ID="*"Corresponding author.  相似文献   

10.
11.
Congenital heart defects affect approximately 1–5 % of human newborns each year, and of these cardiac defects 20–30 % are due to heart valve abnormalities. Recent literature indicates that the key factors and pathways that regulate valve development are also implicated in congenital heart defects and valve disease. Currently, there are limited options for treatment of valve disease, and therefore having a better understanding of valve development can contribute critical insight into congenital valve defects and disease. There are three major signaling pathways required for early specification and initiation of endothelial-to-mesenchymal transformation (EMT) in the cardiac cushions: BMP, TGF-β, and Notch signaling. BMPs secreted from the myocardium set up the environment for the overlying endocardium to become activated; Notch signaling initiates EMT; and both BMP and TGF-β signaling synergize with Notch to promote the transition of endothelia to mesenchyme and the mesenchymal cell invasiveness. Together, these three essential signaling pathways help form the cardiac cushions and populate them with mesenchyme and, consequently, set off the cascade of events required to develop mature heart valves. Furthermore, integration and cross-talk between these pathways generate highly stratified and delicate valve leaflets and septa of the heart. Here, we discuss BMP, TGF-β, and Notch signaling pathways during mouse cardiac cushion formation and how they together produce a coordinated EMT response in the developing mouse valves.  相似文献   

12.
Arteriovenous malformations occur when abnormalities of vascular patterning result in the flow of blood from arteries to veins without an intervening capillary bed. Recent work has revealed the importance of the Notch and TGF-β signaling pathways in vascular patterning. Specifically, Notch signaling has an increasingly apparent role in arterial specification and suppression of branching, whereas TGF-β is implicated in vascular smooth muscle development and remodeling under angiogenic stimuli. These physiologic roles, consequently, have implicated both pathways in the pathogenesis of arteriovenous malformation. In this review, we summarize the studies of endothelial signaling that contribute to arteriovenous malformation and the roles of genes implicated in their pathogenesis. We further discuss how endothelial signaling may contribute to vascular smooth muscle development and how knowledge of signaling pathways may provide us targets for medical therapy in these vascular lesions.  相似文献   

13.
14.
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell–microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor–host communication and stem cell niche are the main focus of this review.  相似文献   

15.
Lysophosphatidic acid: receptors, signaling and survival   总被引:8,自引:0,他引:8  
Though the mitogenic activity of lysophosphatidic acid (LPA) has been well established through classical studies, its mechanism of action was long obscure. Recent identification and cloning of LPA-specific receptors has led to the elucidation of the G-proteins and signaling pathways through which this molecule functions. In addition to its mitogenic properties, recent reports have suggested that LPA may also promote cell survival. This review will summarize the current literature regarding LPA signaling and its role as an antiapoptotic factor.  相似文献   

16.
Notch signaling plays crucial roles in fate determination and the differentiation of neural stem cells in embryonic and adult brains. It is now clear that the notch pathway is under more complex and dynamic regulation than previously thought. To understand the functional details of notch signaling more precisely, it is important to reveal when, where, and how notch signaling is dynamically communicated between cells, for which the visualization of notch signaling is essential. In this review, we introduce recent technical advances in the visualization of notch signaling during neural development and in the adult brain, and we discuss the physiological significance of dynamic regulation of notch signaling.  相似文献   

17.
18.
This review covers recent findings concerning the specification of the photoreceptor subtypes in the Drosophila eye. Particular attention is paid to aspects of retinal patterning and differentiation where relative timing of events seems to be tightly controlled and essential for proper assembly of the compound eye. For example, specification of the founding photoreceptors of each cluster requires sequential positive and negative signaling through the Notch pathway, and reiterated signaling through the epidermal growth factor receptor leads to the pairwise recruitment of the distinct types of photoreceptors in discrete zones across the eye. Results suggest that different signaling environments for these two receptors may exist across the disc, and that receiving cells may constantly shift their predisposition to respond to such signals by adopting given fates. In addition, considerable data exist that the rate of expansion of retinal patterning across the disc is restricted to allow the orderly patterning of retinal precursors, and that one mechanism for controlling this rate may be the co-ordinated expression anterior to the furrow of factors which both inhibit and promote the expansion of retinal patterning. Finally, this review considers the possibility that the morphogenetic furrow serves as a moving source of morphogens which supply spatial information to both anterior and posterior tissue, providing temporal cues that regulate the many events involved in orderly assembly of the precise array of retinal cell types in the compound eye.  相似文献   

19.
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.  相似文献   

20.
Binding of growth factors to cell surface receptors activates protein tyrosine kinases (PTKs) that initiate cascades of downstream signaling events including the mitogen-activated protein (MAP) kinase cascade. This study reports that the PTK inhibitor AG 879 inhibits proliferation of human breast cancer cells through an effect involving inhibition of MAP kinase activation, but which cannot be explained by effects of AG 879 on its known PTK targets. Instead, AG 879 markedly inhibits expression of the RAF-1 gene, which encodes an upstream MAP kinase kinase kinase. Additionally, expression of HER-2, but not of other genes tested, is inhibited by this compound. These novel effects have to be considered when using AG 879 as a TRK-A and HER-2 inhibitor but may have useful therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号