首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在流动氩气中将聚碳硅烷(PCS)于不同温度下进行热解处理制得热解产物,对其进行抗氧化实验,并采用XRD、EDX对PCS热解产物及其氧化产物的物相和成分组成进行表征.结果表明,PCS于1000℃的热解产物主要为无定形的SiC、SiO2和C;随着温度的升高,SiC晶体尺寸逐渐增大,1560℃的热解产物仍由立方SiC、无定形C和SiO2组成;PCS热解产物中的SiO2含量以及SiC的晶化度对其起始氧化温度有一定影响;热解产物中SiO2、SiC氧化形成的SiO2使得PCS热解产物在高温下具有良好的抗氧化性能.  相似文献   

2.
聚碳硅烷/二乙烯基苯与聚硅烷/二乙烯基苯的交联与裂解   总被引:2,自引:0,他引:2  
以二乙烯基苯(DVB)作为交联剂的聚碳硅烷(PCS)/二乙烯基苯(DVB)和聚硅烷(PS)/二乙烯基苯(DVB)两种体系来制备SiC陶瓷.对比了DVB加入量对于交联状态、陶瓷产率的影响,用SEM观察裂解样品的微观结构,用XRD研究了裂解样品的相组成.实验结果表明:PS/DVB体系的陶瓷产率高于PCS/DVB体系;且PS/DVB体系的陶瓷微观结构比PCS/DVB体系致密;其XRD分析表明所得陶瓷含β-SiC.  相似文献   

3.
以废弃脱脂棉和精梳棉为生物模板,聚碳硅烷(PCS)为SiC陶瓷先驱体,采用浸渍法在惰性气氛下1 000℃低温热解制备出了SiC遗态陶瓷,为开发非木材原料废弃物制备环境材料提供了实验依据。研究了浸渍浆料中PCS含量对烧成产物微观形貌、物相结构、线收缩率、体积密度、元素组成和比表面积的影响。结果表明:脱脂棉和精梳棉遗态保持了纤维状,浸渍浆料后纤维遗态被PCS热解产物包裹,形成了主晶形为β-SiC的遗态陶瓷;脱脂棉模板对浆料的吸收更好;随浸渍浆料中PCS含量从10%增加至40%,陶瓷中β-SiC含量逐渐增多,线收缩率逐渐减小,体积密度逐渐增大,热解产物Si含量逐渐增多,比表面积逐渐减小。  相似文献   

4.
采用先驱体浸渍裂解(PIP)法,在碳纤维表面制备了SiC涂层.研究了涂层制备工艺对编织体抗氧化性能的影响.结果表明,经质量分数为10%的聚碳硅烷(PCS)溶液循环浸渍裂解所得样品的抗氧化性能最佳,950℃保温30 min,该样品仍有30%的剩余,较原始碳纤维的完全失重温度提高了300℃.对SiC/碳纤维等温条件下氧化反应的动力学研究表明,材料的等温氧化反应在低温阶段(450~550℃)为扩散和反应共同控制,在高温阶段(550~700℃)为反应控制.基体材料的非等温氧化过程呈现自催化特征.  相似文献   

5.
通过分阶段不同气氛(先H2,后Ar)、全过程H2/Ar混合气氛控制制备了近化学计量SiC纤维.实验结果表明:分阶段不同气氛下,纤维的C/Si原子比随气氛转换温度Th的升高而降低,Th在800℃左右时,可得到近化学计量SiC纤维;混合气氛下,纤维的C/Si原子比随氢气浓度的提高而降低,氢气浓度为60%(体积比)左右时,可得到近化学计量SiC纤维.两种气氛条件下截面上C/Si原子比的分布为芯部高,表面低,并随Th升高或者氢气浓度增大而逐渐趋向一致.氢气裂解产生氢自由基(hyd)与聚碳硅烷(PCS)裂解产生甲基自由基(CH3·)发生反应,生成CH4逸出,降低纤维碳含量.  相似文献   

6.
采用对苯二胺分别与甲基氢二氯硅烷(MeHSiCl2)或二甲基二氯硅烷(Me2SiCl2)胺解,以间氨基苯乙炔(APA)封端,制备含端炔基聚碳硅氮烷PCSN-A和PCSN-B。用FT-IR对其结构进行了表征,通过DSC研究了聚合物固化行为,采用TGA和XRD对其固化物的耐热性能和陶瓷化性能进行了研究。结果表明,PCSN-A由于结构内含有硅氢键(Si—H),Si—H键可参与固化,提高交联密度,其固化物具有优异于PCSN-B的耐热性能和陶瓷化性能,氮气下失重5%的温度(Td5)为564℃。氩气下1 450℃裂解的陶瓷化率为78.4%,得到β-SiC,α-SiC和α-Si3N4陶瓷,聚碳硅氮烷可用作耐高温树脂基体和陶瓷前驱体。  相似文献   

7.
聚二甲基硅烷的热裂解-气相色谱-质谱研究   总被引:2,自引:0,他引:2  
聚二甲基硅烷(PDMS)具有不溶不熔的特性,本文使用热裂解-气相色谱-质谱(Py-GC-MS)研究了PDMS热裂解行为.通过对2种PDMS热裂产物差异的比较,试图获取与PDMS化学结构特征相关的信息,为聚碳硅烷(PCS)原料质量控制标准的制订提供基础信息.  相似文献   

8.
 以聚碳硅烷为先驱体,经过多次表面裂解-浸渍循环制备SiC/Al2O3-PCS陶瓷梯度复合材料.DTA-TG分析研究表明,裂解面抗高温氧化性能得到明显改善.显微红外及SEM扫描分析表明裂解表面内聚碳硅烷陶瓷先驱体全部转化为SiC,从裂解面向聚合物层的过渡为连续过渡,没有明显的界面.随着离裂解面的距离增加,Si-H键红外吸收强度逐步增强.  相似文献   

9.
针对目前SiC多孔陶瓷的高温烧结制备状况,选择以聚碳硅烷为先驱体及枇杷为模板低温烧结制备SiC多孔陶瓷。分析炭化和不同浓度PCS有机浆料对SiC多孔陶瓷体积密度和线收缩率的影响,再通过扫描电镜(SEM)观察和分析SiC多孔陶瓷的表面微观形貌。结果表明:在1000℃低温下成功烧出具有枇杷结构的SiC多孔陶瓷,且未炭化和炭化模板的线收缩率均大于原模板,PCS含量为10%加炭化烧结的模板体积密度最大。  相似文献   

10.
该文以B4C和酚醛树脂为烧结助剂,研究了不同β-SiC(立方SiC)添加量对固相烧结α-SiC陶瓷性能的影响,确定了β-SiC最佳添加量。通过XRD、SEM和密度等测试分析表明,β-SiC在烧结过程中全部转化为6Hα-SiC,β-SiC的加入量为15%时烧结体的组织结构最为致密,烧结体体积密度达到3.13g/cm3。  相似文献   

11.
通过对原生态木材进行可控炭化,得到了保留木材生物形态的多孔炭模板(BPC),用有机硅烷前驱体对此模板浸渍进而裂解(PIP),可制备出孔径有序且大小可调的多孔炭/碳化硅复合材料(BPC/SiC).采用XRD,SEM,氮表面吸附等方法研究了复合材料的微观结构、抗氧化和力学性能等.结果表明PIP裂解产物为微晶态SiC,与多孔炭模板内表面结合良好,使炭模板氧化起始温度及峰值温度均提高150℃;控制浸渍剂浓度和浸渍次数,可控制复合材料的孔径尺寸和形状;浸渍-热解5次循环时,复合材料径向抗压强度可达56.7 MPa,6次循环时,轴向抗压强度可达17.0 MPa.  相似文献   

12.
以炭黑和单质硅为原料压制成试样,在埋炭条件下,分别于1 200,1 300,1 350,1 400,1 450,1 500 ℃下高温烧结,获得不同温度点合成样品.采用XRD分析技术研究试样的物相演变过程,从而对C-Si系原料在埋炭气氛反应过程中的物相变化和反应动力学机制进行研究.试验结果表明:试样中新生成的物相为SiC、石英相和方石英相,几乎没有Si3N4和Si2N2O相.其反应过程是:单质硅与O2生成SiO2、与C反应生成SiC、与CO反应生成SiC和SiO2;温度高于1 450 ℃时,SiO2又会与试样中剩余的C反应生成SiO和SiC.整个过程都伴随着方石英化过程.当温度高于1 450 ℃时,会发生硅的挥发.合成温度和原料配比是影响C-Si系原料合成产物的生成速率和生成量的重要动力学因素.  相似文献   

13.
采用XRD,EDS及热力学分析等方法,对二氧化硅在真空碳热-氯化法炼铝过程中的行为进行研究.研究结果表明:碳热还原过程SiO2在较低温度下发生碳热还原反应生成SiC,在更高的温度条件下碳热还原生成低价氧化硅SiO气体;另外还有一定量的SiC与Al4C3结合生成Al4SiC4.碳热还原过程生成的低价氧化硅SiO气体进入低温区歧解得到单质硅与二氧化硅;同时还有氧化铝碳热还原生成的低价氧化铝Al2O气体进入低温区与CO发生二次氧化反应生成氧化铝与碳,低价氧化铝Al2O与低价氧化硅SiO气体在低温区发生反应的可能性较小.碳热-氯化过程冷凝产物金属铝的EDS检测分析显示,SiO2碳热还原生成的低价氧化硅SiO歧解产物没有混入最终产物中,从而不会影响金属铝的纯度,该金属铝平均纯度达97.03%.  相似文献   

14.
聚铝碳硅烷是耐超高温Si-Al-C纤维的先驱体. 为了制备合适的先驱体,采用聚硅碳硅烷与乙酰丙酮铝反应合成聚铝碳硅烷,并对其反应机理进行了详细的研究. 其中聚硅碳硅烷是含有Si-Si-Si和Si-C-Si的低聚物. 通过在反应过程中从反应体系中抽取样品,并采用FTIR、GPC、1H-NMR、27Al-NMR和紫外可见光谱对反应过程进行追踪分析. 结果表明:反应过程中存在Si-Si-Si向Si-C-Si转化的Kumada重排反应;乙酰丙酮铝的交联作用使得聚铝碳硅烷的相对分子质量和支化度大大提高,乙酰丙酮铝的反应主要发生在330 ℃以下和400 ℃以上,反应产物中Al以Si-O-Al结构存在.  相似文献   

15.
为了研究生物质高温热解气化特性,特别是在此过程中碳烟的形成机理,在一维沉降炉内对麦秆和杨树木屑于900~1 300℃进行高温热解,收集热解产生的气、液、固三相及碳烟产物,对热解产物的产率(产物与生物质干基的质量比)、形貌及组分进行分析,对比了两种生物质热解产物特性并重点分析热解碳烟的形成机理。结果表明,麦秆、木屑热解碳烟的产率随着温度的升高而升高,分别为0.28%~2.40%和0.34%~6.30%,热解焦炭的产率随着温度的升高逐渐降低,分别为2.8%~7.3%和0.29%~2.9%。木屑由于具有较高的木质素和纤维素组分,会产生更多的碳烟;麦秆由于具有高灰分和抽提物含量,会生成更多的焦炭。麦秆的不凝性气体产率为47%~69%,木屑的为59%~77%,热解产气率总体随温度的升高而升高。两种生物质热解的焦油产率均低于1.6%,温度升高至1 200℃时焦油完全转化,焦油的组分几乎均为芳烃类物质。生物质的热解过程中,在900~1 100℃时,碳烟的形成为小分子烃类气体裂解和大分子焦油缩聚机理共同作用的结果,在温度超过1 100℃时,增长的碳烟主要是通过小分子烃类气体裂解的途径生成。  相似文献   

16.
利用废旧棉织物为原料,采用水热法在240~280℃温度范围下成功制备了碳微球。利用XRD、SEM和FT-IR对产物进行表征,通过ICP-Mas研究了产物对水中铝、铅等离子的吸附性能。从研究结果可知,水热反应温度为240~280℃,制备的碳微球粒径约为0.2~5.0μm,对铝、砷、镉、铅离子有较好的吸附性能。废旧棉织物在水热条件下发生水解、脱水,脱除有机基团过程中碳骨架发生球化趋势而逐渐成球。  相似文献   

17.
 组合应用热裂解、冷进样系统和气质联用仪(Py-CIS-GC/MS)对10个不同种类及等级的蜂蜜样品的有氧裂解行为进行了研究.在氧氮混合气体氛围(氧气和氮气按体积比9∶91混合)下,对10个蜂蜜样品在不同裂解温度(900,600,300℃)下的裂解产物挥发性成分进行分析比较,结果表明:①蜂蜜样品在900,600,300℃3个裂解温度下裂解,其共有裂解产物及半数以上样品共有裂解产物个数分别为:900℃,7个和20个,600℃,7个和16个,300℃,4个和6个;3个温度下均裂解出了糠醛、2,3-二氢-3,5-二羟基-6-甲基-4H-吡喃-4-酮、5-(羟甲基)-2-呋喃甲醛、D-阿洛糖4种产物;随着温度的降低,裂解产物个数、质量分减少,但各个温度下各蜂蜜样品主要裂解产物及其在产物中的质量分数差别不大;②3个温度下的裂解产物都以醛类、酮类、糖类以及呋喃、吡喃类物质为主;③部分蜂蜜挥发性成分原形转移进入裂解产物;④冷进样系统对热裂解产物的在线捕集更为完全.  相似文献   

18.
采用等离子喷涂方法在310S基体上制备ZrB_2-SiC陶瓷涂层.通过X射线衍射、带能谱的扫描电镜等分析手段,研究了ZrB_2-SiC陶瓷涂层在700、900℃下表面涂覆50%Na_2SO_4+50%NaCl(质量分数)盐膜的热腐蚀行为.结果表明ZrB_2-SiC陶瓷涂层在700℃热腐蚀时,表现出良好的抗热腐蚀性能,涂层损伤以氧化腐蚀为主;900℃热腐蚀过程中,熔盐进入ZrB_2-SiC陶瓷涂层内部发生反应生成NiCr_2O_4腐蚀产物,引起涂层内部体积变化,致使涂层开裂、脱落.  相似文献   

19.
在氧化性气氛(21% O2 79% Ar)、不同拉应力下研究SiC涂层C/C复合材料在1 000 ℃和1 300 ℃的氧化失效行为;采用扫描电镜观察SiC涂层C/C复合材料氧化失效后的断口形貌.试验结果表明:当温度为1 000 ℃,拉应力由C/C复合材料拉伸强度的20%增加至50%时,SiC涂层C/C复合材料的应力氧化明显加剧,寿命由大于5.00 h缩短到2.92 h,应力对SiC涂层C/C复合材料的寿命有显著影响;当拉应力为C/C复合材料拉伸强度的50%,温度为1 000 ℃和1 300 ℃时,材料均在低温区断裂,应力氧化寿命分别为2.92 h和2.62 h,温度对应力氧化寿命的影响不明显;应力氧化失效以纤维的氧化失效为主,外加拉应力起促进作用.  相似文献   

20.
生物碳是农业废弃生物质经裂解制备的富含有机碳和矿物质、结构复杂的碳材料。生物碳已被广泛应用于促进植物生长、增强环境生态修复,但是关于生物碳浸出液对水生生物的影响的研究还十分少。采用不同温度制备的生物碳的滤出液培养小球藻,研究不同滤出液对小球藻生长的影响。研究结果表明,随着生物碳裂解温度的升高,小球藻的生长逐渐变差:300℃生物碳滤出液培养小球藻的生物质总量最高,其次是500℃,最差的是700℃。另外,通过对滤出液成分的分析,发现影响小球藻的主要因素是滤出液的有机碳含量和p H。随着生物碳制备温度的升高,溶出的有机碳含量减少和p H升高,抑制了藻类的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号