首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选取单筋双跨加筋板模型,基于非线性有限元方法计算了在单轴压缩载荷作用下,模型范围、点蚀坑形状、腐蚀位置、带板柔度、加筋柔度、腐蚀体积、加强筋个数等因素对含腐蚀损伤加筋板极限强度的影响.研究结果表明:腐蚀体积是影响加筋板极限强度的关键因素,且极限强度的折减值与腐蚀体积比接近二次曲线的关系.根据数值计算结果利用多元函数拟合功能得到了含腐蚀损伤加筋板结构极限强度评估公式,可对含腐蚀损伤加筋板的极限强度进行合理评估.  相似文献   

2.
为了揭示点蚀损伤对构件破坏模式和极限承载力的影响机理,完善腐蚀角钢构件的力学性能评估体系,基于腐蚀试验数据和数值模拟,提出针对随机点蚀角钢构件的有限元模型构建方法,研究腐蚀损伤体积、蚀坑尺寸和蚀坑分布位置对Q460点蚀等边角钢构件极限抗拉承载力的影响,并根据其极限抗拉承载力劣化规律,采用非线性回归的方式拟合了点蚀角钢极限抗拉承载力的折减公式.结果表明,随机点蚀角钢的极限抗拉承载力退化整体上与腐蚀损伤体积呈正相关,蚀坑半径和蚀坑分布位置对承载力的影响较小,但蚀坑深度和蚀坑分布范围的影响不容忽视,拟合的点蚀角钢极限抗拉承载力的折减公式较刚度折减法和厚度折减法误差更小,准确度较高,可见其适用于点蚀角钢构件极限抗拉承载力的计算,可以应用到实际工程分析中.  相似文献   

3.
通过分析共同结构规范中屈曲强度评估公式,得出评估所需的主要参数为单一载荷作用下板的屈曲强度.针对点蚀损伤船体板进行系列屈曲强度有限元数值分析,继而通过统计学方法分析得到基于腐蚀体积的单一载荷作用下点蚀损伤船体板屈曲强度计算公式.基于实船腐蚀损伤检测参数,采用统计学方法分析检测参数与腐蚀体积的关系,并编制相应的计算程序得到船体板的腐蚀体积,将其代入已得到的屈曲强度计算公式,并进一步应用到规范屈曲强度评估公式中即可完成点蚀损伤船体板屈曲强度评估.此评估方法在规范公式基础上,结合了实船腐蚀损伤检测参数,充分体现了腐蚀损伤对船体结构屈曲强度的影响,且所有评估参数在工程分析中均可得,评估方法简单,适用于船舶结构强度安全评估的工程分析.  相似文献   

4.
针对含裂纹损伤船体板上的初始缺陷(初始变形、焊接残余应力),利用非线性有限元方法进行了仿真模拟以及相关计算,系统地分析了初始变形、焊接残余应力及其组合对不同裂纹情况的船体板在纵向压力下的极限强度影响.通过数值计算结果的对比分析和讨论,得到当裂纹长度较小时,组合初始缺陷对裂纹板极限强度的影响占主导地位,且初始变形更大;当裂纹长度较大时,裂纹损伤对板极限强度的影响占主导地位.  相似文献   

5.
考虑到船体结构腐蚀的随机性,给出了随机腐蚀船体板的极限强度分析方法.根据散货船测厚报告中腐蚀数据,研究船舯甲板边板腐蚀数据的分布规律,建立随机腐蚀模型.采用非线性有限元方法对腐蚀板结构的极限强度进行计算分析,通过蒙特卡罗仿真方法计算确定腐蚀甲板边板极限承载能力的概率统计特性,最后对板结构极限承载能力进行可靠性分析.结果表明:甲板边板的腐蚀数据和极限承载能力均符合对数正态分布,船体板的极限应力比与腐蚀体积比成线性反比关系.  相似文献   

6.
基于复合材料三维Hashin破坏准则和相应刚度退化理论,使用基于强度理论的脱层损伤预测方法,分析了复合材料船体梁中垂和中拱状态下考虑脱层损伤模式的总纵极限强度. 提出使用折减因子对不考虑脱层的复合材料船体梁极限强度进行折减,以获取考虑脱层损伤模式的复合材料船体梁总纵极限强度的计算方法.  相似文献   

7.
管道表面蚀坑-裂纹的应力强度因子分析   总被引:1,自引:0,他引:1  
针对在役的海底管道遭受腐蚀疲劳损伤时其管道表面出现点蚀坑问题,应力强度因子成为衡量蚀坑向裂纹转变的临界条件之一.断裂力学的腐蚀疲劳寿命分析的基础是腐蚀疲劳裂纹扩展,裂纹的不稳定扩展又由应力强度因子来判别.因此,在腐蚀疲劳破坏中,将点蚀坑和应力强度因子结合起来研究变得尤为重要.基于应力集中是导致裂纹萌生的主导因素,建立了双参数蚀坑模型,合理地解释了腐蚀疲劳裂纹在蚀坑处萌生位置差异的现象.在管道内流体压力的作用下,管道外表面轴向I型裂纹在环向应力的作用下成为最为危险的一种裂纹型式.基于线弹性断裂力学,利用ABAQUS软件,在管道内压作用下,采用二维模型,对管道表面的轴向I型蚀坑+裂纹的应力强度因子展开了分析.结果显示,蚀坑对裂纹应力强度因子的取值产生明显影响,可显著降低裂纹扩展的门槛值.进一步采用三维模型,利用扩展有限元法,对影响轴向I型蚀坑-裂纹应力强度因子的蚀坑参数开展了敏感性分析.结果显示,蚀坑参数的不同,对蚀坑-裂纹应力强度因子、裂纹形状因子的影响趋势各异.随着蚀坑参数深径比?、深度d的增大,蚀坑-裂纹应力强度因子的取值也逐渐变大;蚀坑参数深径比?、深度d对形状因子F取值的影响存在一定的区间效应.  相似文献   

8.
通过建立有限元模型分析了内部随机点蚀对外压作用下2D圆环屈曲压力的影响.由于管道内部多相流侵蚀-腐蚀的影响,管道极易在6点钟方向产生内部沟槽腐蚀和点腐蚀,进而导致管道损坏失效.内部腐蚀是造成深海管道损坏失效的重要因素,针对内部随机点蚀对管道屈曲压力影响的问题,将用户自定义的Python程序嵌入Abaqus有限元数值模拟软件进行研究.把管道简化为2D圆环模型,利用Python程序中均匀分布随机数生成器,建立多个随机点蚀圆片模型;根据内部随机点蚀的特点,采用随机数发生器得到在2D圆环内表面3点钟到9点钟方向随机分布的点蚀坐标;在整体坐标系下完成模型装配后,运用Abaqus软件中的布尔切割运算功能建立了含内部随机点蚀的2D圆环有限元模型.使用上述模型研究了外压作用下内部随机点蚀对圆环屈曲压力的影响,模型校准后基于该2D圆环模型开展了参数敏感性分析,研究结果表明椭圆度、径厚比和腐蚀比是影响2D圆环屈曲压力折减系数的主要因素.基于多参数非线性回归分析,建立了椭圆度、径厚比和腐蚀比3个参数对外压作用下含内部随机点蚀2D圆环屈曲压力折减的经验公式.研究结果可为内部随机点蚀作用下的海底管道的极限强度评估和剩余寿命分析提供参考.  相似文献   

9.
为了研究桥梁含裂纹拉索钢丝的腐蚀损伤机理和受拉力学特性,以含预置裂纹的腐蚀高强钢丝为研究对象,采用电弧线切割方法、中性盐雾腐蚀试验、拉伸试验、电镜试验和有限元分析,开展相关内容研究。提出了考虑中性盐雾腐蚀影响的含裂纹高强钢丝拉伸受力性能的评价方法。结果表明:刻痕的应力集中系数远大于正常腐蚀蚀坑的系数,钢丝力学性能的变化是由于初始裂纹进一步腐蚀而引起,特别在腐蚀初期,钢丝处于非常不利的阶段,其受拉性能较低。建立的初始裂纹钢丝有限元模型,能较好地描述中性盐雾腐蚀试验和静力拉伸试验得出的质量损失率、截面面积损失率及极限强度的关系。  相似文献   

10.
为研究点蚀损伤钢板延性退化机理,采用三维形貌测量技术测得不同锈蚀程度钢板表面点蚀坑几何参数,并通过单调拉伸试验和有限元数值分析研究了点蚀损伤对钢板延性的影响.此外,根据应力三轴度与点蚀坑深度、间距及深径比间的关系,提出了与点蚀坑几何尺寸相关的点蚀损伤钢板等效延性断裂准则.结果表明:表面点蚀坑深度及深径比均随钢板锈蚀程度的增加而线性增长;点蚀坑几何尺寸的增长显著改变了钢板内部应力三轴度的大小和分布,降低了等效塑性断裂应变,加快了颈缩阶段钢板内部裂纹的萌生和扩展,从而导致锈蚀钢板极限伸长率逐渐退化;采用等效延性断裂准则能准确地模拟点蚀损伤导致的钢板延性退化现象.  相似文献   

11.
基于强度折减法的边坡稳定性分析   总被引:2,自引:1,他引:1  
将有限元强度折减法应用于边坡稳定分析中,探讨了该方法的基本原理、安全系数的定义、屈服准则和失稳判据等。采用强度折减法对某边坡进行稳定性分析,并与传统极限平衡法求得的安全系数进行对比。计算结果表明,采用塑性区贯通或特征点位移突变为失稳判据确定的安全系数与传统极限平衡法的计算结果很接近,表明有限元强度折减法能够满足工程应用。建议在有限元强度折减法中联合采用塑性区贯通和特征点位移突变作为边坡的失稳判据。  相似文献   

12.
为明确应力水平及暴露时间对2219铝合金腐蚀损伤力学性能的影响,选择在不同应力水平作用下暴露于EXCO腐蚀溶液中,经不同时间加速腐蚀后的2219铝合金试样,开展表面蚀坑深度测量、力学性能测试、拉伸断口形貌观察试验。结果表明,应力水平、暴露时间都是影响试样应力腐蚀损伤发展从而影响材料力学性能变化的重要因素。在腐蚀的初期阶段,即0.0~1.5 h,应力水平因素的影响有限;当暴露时间大于等于2.0 h,应力水平引起的以蚀坑平均深度为表征的腐蚀损伤更加显著。但在试验时间(2.5 h)内,应力水平对腐蚀损伤所产生的影响小于暴露时间,因而对材料力学性能变化的影响也小于暴露时间。腐蚀损伤造成的点蚀坑、微裂纹破坏了材料的连续性,使试样材料的抗拉强度、延伸率、弹性模量等力学性能指标下降,是促使材料在拉伸试验中没有经过充分的塑性变形阶段就发生瞬间断裂的重要原因。深度大的点蚀坑、微裂纹,可能成为断口主裂纹的起源。  相似文献   

13.
利用理想单元法(ISUM)研究了浮式生产储油船(FPSO)完整船体与受损结构船体梁极限强度.考虑了腐蚀及碰撞对船体结构强度的影响,评估了腐蚀状态下船体极限强度随时间的变化;在人为因素风险分析基础上对该船船体有效生命期进行了预报.分析表明,船体梁极限强度是影响船舶安全的重要因素,对FPSO进行风险分析和安全评估是必要而且可行的.另一方面,将工程技术与管理科学结合起来研究安全问题是合理有效的途径.主要结论对于海事界实施综合安全评估,提高船舶或海洋结构物安全性具有理论意义和应用价值.  相似文献   

14.
针对极限平衡法和有限元强度折减法在计算边坡安全系数中存在的问题,结合某工程实际采用矢量和法安全系数对边坡稳定性进行分析,并将其计算结果与传统分析法计算结果进行比较。结果表明,采用边坡矢量和法得到的计算结果与极限平衡法和有限元强度折减法之间的计算结果最大相对误差为9.7%,误差范围为4.2%~9.7%,而与有限元强度折减法计算结果的相对误差仅为5.9%。由此表明采用矢量和法安全系数用于求解边坡的稳定性是可行的。  相似文献   

15.
对航空LY12CZ铝合金试验件进行了腐蚀试验,提取了孔蚀率、蚀坑分形维数、蚀坑半径、灰度值、能量值共计五种腐蚀图像特征值。通过灰色预测方法对腐蚀图像特征值与腐蚀损伤之间的关系进行了研究,构建了基于图像特征值的GM(1,5)和GM(1,6)腐蚀损伤预测模型,模型计算所得蚀坑深度与实测蚀坑深度较为接近,结果合理。  相似文献   

16.
借助有限差分法确定考虑多重环境因素影响的钢骨混凝土桥墩内置钢材初始锈蚀时间,基于海蚀环境中纵筋截面面积和屈服强度时变退化公式,建立钢骨混凝土桥墩内部型钢力学性能劣化表征方法,基于OpenSees软件建立考虑腐蚀损伤的钢骨混凝土桥墩全服役期内有限元纤维模型。通过滞回分析及延性分析,了解和掌握全寿命服役过程中钢骨混凝土桥墩的腐蚀损伤和性能劣化机制,探究腐蚀现象对于耗能能力、延性、强度和峰值位移反应的影响规律。结果表明:保护层厚度显著影响锈蚀初始发生时间,型钢腹板性能退化程度对构件性能的影响程度远远小于翼缘。翼缘锈蚀开始后,桥墩抗震性能出现明显的退化现象。  相似文献   

17.
甲板板格屈曲破坏下船体梁的可靠性计算   总被引:1,自引:0,他引:1  
用结构可靠性理论来分析船体结构破坏是造船理论的又一发展,有着重要的意义。本文论述了由于甲板板格屈曲破坏而导致船体梁最终溃折的破坏方式,对用扶强材加强的板格在平面内压力作用下的三种失效模式以及相应的船体梁极限弯矩作了均值和变异的分析。本文还对构件尺寸、材料特性以及焊接残余应力等因素对板格和船体梁的影响,作了敏感性分析。本文分别以屈服和屈曲作为失效模式计算了两艘实船的失效概率。研究结果表明,在船体梁破坏中板格屈曲比屈服更易发生,这对我们令后进行船体结构系统分析有一定的参考价值。  相似文献   

18.
针对复杂环境中飞机结构表面容易形成多种形式的腐蚀损伤,为了探讨各种腐蚀损伤对结构动力特性的影响,采用了有限元方法对航空结构中铝合金板在局部和均匀两种腐蚀损伤情况下的动力特性进行了模拟计算,得到铝合金板在两种不同腐蚀损伤情况下的固有频率大小和应力云图.结果显示,均匀腐蚀造成铝合金板的固有频率显著降低,而局部坑蚀对固有频率影响不大.最后通过对铝合金板上有随机分布不同深度腐蚀坑时进行动力响应分析,发现腐蚀深度对其坑底部的主应力影响比较大,一般随着腐蚀坑的深度增加而增大.  相似文献   

19.
各国现行规范均规定,在进行重力坝设计或安全鉴定时必须审查大坝沿建基面和坝基岩体内软弱结构面的抗滑稳定性,要求保证大坝不滑动且有必要的安全裕度.针对某一典型重力坝工程,推导了考虑加固措施影响的重力坝抗滑稳定计算公式,并结合预应力锚索加固监测数据,通过有限元模拟预应力锚索的加固效应,最后将刚体极限平衡法与基于场变量的强度折减法相结合评估该工程加固措施的有效性.研究结果表明:在采用有限元计算时,当折减系数增大至2.3时,坝踵及f1夹层与F73断层交界位置均产生了一定程度的屈服;当折减系数达到3.0时,f1夹层形成整体贯通,有限元计算仍收敛;当折减系数达到3.05时,计算出现不收敛.与刚体极限平衡法的计算结果相比,基于场变量的强度折减法所得的抗滑稳定安全系数计算结果在允许误差5%范围之内,且均满足规范要求,验证了该工程除险加固措施的有效性.本研究可为类似预应力锚索加固重力坝工程提供参考依据.  相似文献   

20.
王战辉  马向荣  高勇  李瑞瑞 《河南科学》2019,37(7):1165-1170
以X60管线钢双点腐蚀缺陷管道作为研究对象,根据油气管道的本身特点以及腐蚀机理,借助ANSYS有限元分析软件,考察双点蚀缺陷管道应力云图分布规律,通过改变双点蚀缺陷半径、深度和腐蚀间距,考察其对剩余强度和等效应力的影响规律.结果表明,最大等效应力出现在双点腐蚀缺陷周围区域;随着内压的增大,在未达到屈服极限时,等效应力与内压呈线性关系,当等效应力达到屈服极限时,随着内压的增加,等效应力维持不变,当等效应力超过屈服极限时,随着内压的增大,等效应力增加;随着双点蚀缺陷半径的增大,剩余强度呈增加的趋势,安全性提高;随着双点蚀缺陷深度的增加,剩余强度呈减小的趋势,安全性降低.所得结论对油气管道腐蚀与防护有一定的指导意义和参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号