首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用固相反应法制备了La0.7Sr0.3Co1-xCuxO3-δ系列中温固体氧化物燃料电池(SOFC)阴极材料粉体.对其进行晶体结构表征,高温电导率和热膨胀曲线测试,并选取其中性能较好的样品进行了单电池实验.结果表明,Cu的掺杂降低了(La,Sr)CoO La3体系阴极材料的热膨胀系数,在x=0.05时电导率略高于未掺Cu的样品.以La0.7Sr0.3Co0.95Cu 0.05O 3-δ为阴极、Ce0.8Sm0.2O1.9为电解质组成的SOFC单电池,在850℃最大短路电流密度达511mA/cm2,最大输出功率密度约为0.106W/cm2.  相似文献   

2.
自蔓延高温合成SOFC阴极材料La0.7Sr0.3MnO3   总被引:12,自引:0,他引:12  
设计了4类共9个化学反应,采用自蔓延高温合成的方法合成了固体氧化物燃料电池阴极材料La0.7Sr0.3MnO3?B8龇从μ逑捣直鹗牵篖a0.7Sr0.3MnO3?A3琈n粉与氧化剂NaClO4或Ba(ClO4)2在空气中的反应;La2O3,SrC03与Mn粉在氧气中的反应;LaCl3,SrCl2,MnCl2与氧化剂NaO2或Na2O2在空气中的反应;La(NO3)3,Sr(NO)2,Mn粉与C3N6H6在空气中的反应.XRD和I.C.P分析表明:采用SHS法成功合成了菱方晶系(R3C)钙钛矿结构的La0.7Sr0.3MnO3?B7勰渲写蟛糠址从μ逑岛铣刹镂ハ郘a0.7Sr0.3MnO3?A3梅椒芟灾档筒牧现票赋杀荆欣谕贫疭OFC的实用化和产业化进程.  相似文献   

3.
采用凝胶浇注法(gelcasting)合成了中温固体氧化物燃料电池阴极材料Ba0.5Sr0.5Co0.2Fe0.8O3-δ粉体。对BSCF粉末和烧结体的性能进行了测试分析。结果表明,制备的试样为单一钙钛矿相,其颗粒尺寸均匀,BSCF阴极材料的电导率随测试温度的升高而降低,其中Ba0.5Sr0.5Co0.2Fe0.8O3-δ在500℃电导率为25.4S/cm。Ba0.5Sr0.5Co0.2Fe0.8O3-δ与SDC的界面阻抗在800℃为0.20Ωm2。  相似文献   

4.
固体氧化物燃料电池技术提供清洁、高效的发电方式。La1-x Srx Fe1-y MnyO3-δ(LSFM)钙钛矿作为中温固体氧化物阴极材料受到人们的关注。本文用柠檬酸盐法合成了La1-x SrX Fe1-y Mny O3-δ(x=0.1,0.2,0.3,0.4;y=0.1,0.2,0.3)钙钛矿阴极材料。使用同步热分析仪(TG/DTA)研究了钙钛矿结构的形成历程。XRD衍射结果证明单一钙钛矿相的最佳形成温度是800℃。采用直流四探针法测试了样品的电导率,其中La0.6 Sr0.4 Fe0.9 Mn0.1O3-δ。显示了最高值。用碘量法测量了LS-FM中的非化学计量氧值。随着sr与Fe的增加,非化学计量氧值增大。通过XRD与SEM分析,La0.06 Sr0.4 Fe0.9 Mn0.1O3-δ与La0.9 Sr0.1 Ga0.8 Mg0.2 O3-δ之间显示出较好的化学和热相容性。结果表明LSFM有望作为中温固体氧化物燃料电池的阴极材料。  相似文献   

5.
用固相反应法制备了La空位的La1/2(1-x)Ba1/2CoO3(x=0, 0.04, 0.08, 0.1)系列阴极材料,系统研究了La空位对微结构和电输运特性的影响。结果表明:随着La空位浓度的增加,晶胞参数和体积减小;Co-O键长减小,Co-O键角没有发生变化,CoO6八面体发生畸变;高温下,当La空位浓度x=0.08时,电导率得到大大的提高,300K时高达1000Scm-1,约为母相材料La1/2Ba1/2CoO3的2倍。  相似文献   

6.
固体氧化物燃料电池技术提供清洁、高效的发电方式。La1-xSrxFe1-yMnyO3-δ(LSFM)钙钛矿作为中温固体氧化物阴极材料受到人们的关注。本文用柠檬酸盐法合成了La1-xSrxFe1-yMnyO3-δ(x=0.1,0.2,0.3,0.4;y=0.1,0.2,0.3)钙钛矿阴极材料。使用同步热分析仪(TG/DTA)研究了钙钛矿结构的形成历程。XRD衍射结果证明单一钙钛矿相的最佳形成温度是800℃。采用直流四探针法测试了样品的电导率,其中La0.6Sr0.4Fe0.9Mn0.1O3-δ显示了最高值。用碘量法测量了LS-FM中的非化学计量氧值。随着Sr与Fe的增加,非化学计量氧值增大。通过XRD与SEM分析,La0.6Sr0.4Fe0.9Mn0.1O3-δ与La0.9Sr0.1Ga0.8Mg0.2O3-δ之间显示出较好的化学和热相容性。结果表明LSFM有望作为中温固体氧化物燃料电池的阴极材料。  相似文献   

7.
凝胶浇注法制备了阴极材料Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ),并对Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)材料的性能进行分析。制备的Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)为钙钛矿相,其颗粒粒度小,并且尺寸均匀。将粉末在1000℃下烧结,所得烧结体的孔隙率为29.86%。在500~800℃温度范围内测试,测试温度升高,电导率降低,在500℃时电导率最大为38.2 S/cm。阴极Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)与电解质Sm_(0.2)Ce_(0.8)O_(1.9)做成阴极对称单电池,在800℃时测得欧姆阻抗和界面阻抗分别为1.92Ω·cm~(-2)和0.17Ω·cm~(-2),阴极BSCF与电解质SDC的化学相容性好。  相似文献   

8.
用热解法制备了掺杂La、Ce、Co、Ni等元素的氧还原催化材料MnOx/AC,并采用XRD和电化学方法对所制备材料的性质和电化学反应性能进行了表征。结果表明,掺杂适量的La、Ce、Co和Ni等元素可改善电极的氧还原反应性能。掺杂La和Co元素的MnOx/AC氧催化还原性能最好,其中,在50mA/cm2的电流条件下,使用这两种掺杂材料所制备的模拟锌-空气电池的放电电压分别为1.1236V和1.1246V。  相似文献   

9.
La0.8Sr0.2Co0.5Fe0.5O3纳米粉料的制备与表征   总被引:1,自引:0,他引:1  
采用溶胶 凝胶法合成了中温固体氧化物燃料电池阴极材料La0 .8Sr0 .2 Co0 .5Fe0 .5O3 (LSCF)粉体 .用热重分析 (TG)、差热分析 (DTA)、X射线衍射分析 (XRD)、扫描电镜 (SEM )、透射电镜 (TEM )、傅里叶红外 (FT IR)、BET和元素分析仪对热分解机理和粉体的性质进行了研究 .结果表明 ,随着温度的不断升高 ,凝胶先经过失水过程 ,然后发生有机物和部分硝酸盐的分解及碳酸盐的生成 ,5 0 0℃时开始形成钙钛矿相 ,6 0 0℃时硝酸盐完全分解 ,80 0℃时残余的碳酸盐完全分解并形成单相的钙钛矿晶型结构 ;在 80 0℃焙烧 2h ,粉体的平均粒径为 34.2nm ,比表面积为 2 8.2m2 / g .  相似文献   

10.
溶胶-凝胶法合成La_(0.7)Sr_(0.3)MnO_3   总被引:6,自引:0,他引:6  
以乙二醇为溶剂,柠檬酸为胶溶剂,用溶胶 凝胶法,合成固体氧化物燃料电池阴极材料La07Sr03MnO3·粉料的平均粒径为70nm;粒度分布为40~80nm,低温(1000℃)下即可获得单相钙钛矿结构的阴极材料·  相似文献   

11.
电Fenton是一种新型的电化学高级氧化技术,其阴极室区在通电时可催化还原溶解O2原位产生H2O2或转化为.OH,并促进对有机污染物的降解,从而提高了传统Fenton(H2O2/Fe2+)体系的催化氧化效率.电(类)Fenton体系中理想的阴极材料须具备两方面的特点:有较大比表面积,以增大氧气向阴极表面传质和接触面积;电极要对O2还原为H2O2具有良好的催化活性,并对H+还原为H2时高的过电位具有抑制作用.因此,开发合适阴极材料是电(类)Fenton体系的研究重点.本文概述了电(类)Fenton高级氧化技术基本原理及研究进展,重点阐述了电(类)Fenton阴极材料的电催化特性和最新研究现状,并对其当前研究趋势进行了归纳,引用文献45篇.  相似文献   

12.
层状LiNi1/3Mn1/3CO1/3O2正极材料的合成   总被引:1,自引:0,他引:1  
用碳酸盐同沉淀法合成了LiNi1/3Mn1/3Co1/3O2正极材料,采用XRD(X-RayDiffraction)、SEM(ScanningElectronMicroscope)、差分计时电位法和充放电循环等对材料的物理化学性质及电化学性能进行了测试分析。XRD分析表明在合成温度为800℃或更高时,所合成的产物均为α-NaFeO2型的层状结构,SEM分析表明在合成温度为800或850℃时,产物为微小晶粒团聚成的球形颗粒,合成温度为900℃以上时,产物颗粒发生破碎,形状不规则。950℃合成的LiNi1/3Mn1/3Co1/3O2材料在2·5~4·4V电位区间内,首次放电容量为162mAh·g-1,并具有良好的循环性能。随着充放电电压的升高,首次不可逆放电容量增大,循环稳定性减弱。在低温(800,850℃)下合成的LiNi1/3Mn1/3Co1/3O2材料与高温下(900,950℃)得到的材料性能有很大差别,这是由于在高温和低温下得到材料的结构差别所造成的。  相似文献   

13.
用碳酸盐同沉淀法合成了LiNi1/3Mn1/3Co1/3O2正极材料,采用XRD(X7-Ray Diffraction)、SEM (Scanning Electron Microscope)、差分计时电位法和充放电循环等对材料的物理化学性质及电化学性能进行了测试分析。XRD分析表明在合成温度为800℃或更高时,所合成的产物均为α-NaFeO2型的层状结构,SEM分析表明在合成温 度为800或850℃时,产物为微小晶粒团聚成的球形颗粒,合成温度为900℃以上时,产物颗粒发生破碎,形状不规则。950℃合成的LiNi1/3Mn1/3Co1/3O2材料在2.5~4.4V电位区间内, 首次放电容量为162 mAh·g-1, 并具有良好的循环性能。随着充放电电压的升高,首次不可逆放电容量增大, 循环稳定性减弱。在低温(800, 850℃)下合成的LiNi1/3Mn1/3Co1/3O2材料与高温下(900, 950℃)得到的材料性能有很大差别,这是由于在高温和低温下得到材料的结构差别所造成的。  相似文献   

14.
1 Results For electrode materials in lithium batteries,a high surface area can provide higher electrode/electrolyte contact areas,thus eventually causing the shorter diffusion paths with the particles,and provides more facile intercalation for Li ions[1-4].In addition,reduced strain of intercalation and contributions from charge storage at the surface may also contribute to Li capacity,compared with bulk counterparts.In this regard,I am going to talk about the preparation and electrochemical properties o...  相似文献   

15.
Series compounds Ca_3(Co_(0.9)M_(0.1))_2O_6(M = Co,Fe,Mn,Ni) with hexagonal crystal structure were prepared by sol-gel route as the cathode materials for solid oxide fuel cells(SOFCs).Effects of the varied atomic compositions on the structure,electrical conductivity,thermal expansion and electrochemical performance were systematically evaluated.Experimental results showed that the lattice parameters of Ca_3(Co_(0.9)Fe_(0.1))_2O_6and Ca_3(Co_(0.9)Mn_(0.1))_2O_6 were both expanded to certain degree.Electron-doping and hole-doping effects were expected in Ca_3(Co_(0.9)Mn_(0.1))_2O_6and Ca_3(Co_(0.9)Ni_(0.1))_2O_6 respectively according to the chemical states of constituent elements and thermal-activated behavior of electrical conductivity.Thermal expansion coefficients(TEC) of Ca_3(Co_(0.9)M_(0.1))_2O_6 were measured to be distributed around 16×10~(-6)K~(-1) and compositional elements of Fe,Mn,and Ni were especially beneficial for alleviation of the thermal expansion problem of cathode materials.By using Ca_3(Co_(0.9)M_(0.1))_2O_6 as the cathodes operated at 800 ℃,the interfacial area-specific resistance varied in the order of M = Co M = Fe M = Ni M = Mn,and the over-potential increased in the order of M = Fe ≈ M = Co M = Mn M = Ni.Among all of these compounds,Ca_3(Co_(0.9)Fe_(0.1))_2O_6 showed the best electrochemical performance and the power density as high as ca.500 mW cm~(-2) at800 ℃ achieved in the single cell with La_(0.8)Sr_(0.2)Ga_(0.83)Mg_(0.17)O_(2.815) as electrolyte and Ni-Ce_(0.8)Sm_(0.2)O_(1.9) as anode.Ca_3(Co_(0.9)M_(0.1))_2O_6(M = Co,Fe,Mn,Ni) can be used as the cost-effective cathode materials for SOFCs.  相似文献   

16.
用溶胶-凝胶法制备了La0.8Sr0.2Mn0.86Fe0.14-xCoxO3(x=0.01,0.02,0.03)粉晶, 用XRD表征了其晶体结构,用微波网络矢量分析仪测量了样品在2-18GHz频率范围内的复介电常数和复磁导率,根据测量数据计算了微波反射率与频率的关系曲线。研究结果表明,样品都有一个吸收峰,峰高及位置随x不同而异,其中样品La0.8Sr0.2Mn0.86Fe0.13Co0.01O3,厚度为1.80mm时,吸收峰高27.9dB,2-18GHz吸收带宽5.3GHz;厚度为2.00mm时,吸收峰高26dB, 2-18GHz吸收带宽4.9GHz。从电、磁损耗角正切看,样品既有介电损耗又有磁损耗,但介电损耗要大于磁损耗。  相似文献   

17.
采用柠檬酸盐法合成了La06Sr0.4Co0.2Fe08O3-δ(LSCF6428)粉体材料.经XRD分析凝胶在1 100℃煅烧时,转变为正交钙钛矿结构的纯相产物,与固相反应法采用1 250℃的烧结温度相比,柠檬酸盐法能有效降低粉体的烧结温度.实验结果表明,在500~700℃中温范围内,LSCF6428样品在空气气氛中的电导率均超过了100S·cm-1,且随温度的升高,样品的电导率在500℃附近出现极值,达到100S·cm-1.其导电机理可以用p型小极化子绝热空隙理论来解释.  相似文献   

18.
以偏硼酸锂和三氧化二铁为原料,采用固相反应,合成了动力锂离子电池新型正极材料LiFeBO_3,并对该材料进行有机硅聚合物包覆保护处理。采用XRD和SEM等方法对样品进行表征。实验表明,LiFeBO_3具有较高的重量比容量,而且有机硅聚合物包覆后的硼酸铁锂具有更好的电化学性能,5%硅聚合物包覆的硼酸锂首次放电容量达195...  相似文献   

19.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号