首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
关联规则挖掘方法的改进   总被引:3,自引:2,他引:3  
分析了关联规则的衡量标准,针对其中的缺点和不足,提出了一种匹配度方法用以取代置信度,并将匹配度方法生成的规则与支持度-置信度框架生成的规则进行了比较.结果表明:用匹配度方法生成的规则不仅前件和后件具有较高的相关性,而且减少了冗余规则的生成.  相似文献   

2.
交易数据库中的关联规则挖掘是一个很有价值的问题。现在已有不少关联规则模型,挖掘关联规则的算法也在不断改进。然而,在真正的数据库中,一些特殊的问题还没有被解决。一个主要的未解决的问题就是处理包含时态信息的数据。近几年来,为了解决这个问题,已经提出了基于某些方法的研究。  相似文献   

3.
定量关联规则的挖掘   总被引:2,自引:0,他引:2  
介绍在关系数据库中包含定量和范围属性关联规则的挖掘问题,给出一些定义和方法,引人局部完备性来度量由于划分而引起大量信息的丢失程序,决定是否划分一个定量属性及划分数。  相似文献   

4.
基于云模型的关联规则挖掘方法   总被引:11,自引:0,他引:11       下载免费PDF全文
目前对关联规则的研究主要集中在对布尔型属性关联规则的挖掘,本文引入基于云模型进行数据量型属性关联规则的挖掘的方法,并定义云关联规则“如果X是A则Y是B”,其中、A、B分别是属性X和Y中由云模型描述的概念。利用这种方法得到的关联规则更容易让人理解,也克服了传统划分边界过硬的问题,在此基础上,定义了在挖掘云关联规则中支持率、可 和相关性的计算公式,并阐明了它的一般性,即传统的硬划分及经典的布尔型属性关  相似文献   

5.
关联规则是数据挖掘中一个重要的研究内容。典型的关联规则算法是由R.Agrawal等提出的Apriori算法。本文对Apriori算法进行了分析,指出了挖掘中的关键步骤,并给出了算法改进技术。  相似文献   

6.
针对分布式数据库和约束条件的特点,提出了2种在分布式环境下挖掘约束性关联规则的有效算法,即基于Apriori算法的DMAIC算法和基于频繁模式树的DAMICFP算法.此外,进行了实例验证和测试分析,指出了这2种算法各自的优缺点及适用条件.研究结果表明:DMAIC算法可靠性高,通信协议简单,适用于对通信性能要求不高的分布式数据库;DAMICFP算法执行效率高,通信性能好,适用于对通信性能要求较高的多项目分布式数据库;这2种算法均能有效地解决分布式挖掘约束性关联规则的问题.  相似文献   

7.
在关联规则的挖掘过程中引入遗传算法,并且结合一个实例,给出了详细的利用遗传算法挖掘关联规则的实现方法。遗传算法的引入很好的避免了规则集中的"假规则"问题。同时,在算法的具体实现过程中,采用了截断赌轮、动态变异概率等方法,有效避免了遗传算法中早熟现象的发生。  相似文献   

8.
分布数据库关联规则挖掘   总被引:4,自引:0,他引:4       下载免费PDF全文
先从理论上证明分布数据库局部频繁集与全局候选频繁集之间存在某种关系 ,利用该关系设计分布数据库关联规则挖掘算法 .该算法的局部频繁集挖掘利用FP -树实现 ,不需生成候选频繁集 ,全局频繁集在局部频繁集基础上直接生成 ,不需重新扫描各局部数据库 ,不会造成过度的网络通信开销 ,具有很好的挖掘效率  相似文献   

9.
传统的基于支持度-置信度框架的关联规则挖掘方法可能会产生大量不相关的、甚至是误导的关联规则,同时也不能区分正负关联规则。本文提出了一种评价关联规则的可量化标准,进一步提出一种能同时挖掘正负关联规则的框架,实验证明该方法是有效的。  相似文献   

10.
关联规则挖掘中的关联推理   总被引:1,自引:0,他引:1  
在大型数据库项目之间发现关联规则是一个重要的数据挖掘问题,而挖掘出的关联规则数常常是巨大的.现基于覆盖运算,讨论已知关联规则可导出其它关联规则,并指出存在能覆盖全部关联规则的最小规则集.  相似文献   

11.
在分析广义关联规则基本模型和求解在规则的基本性质基础上,提出一个新的基于关系操作的挖掘广义关联规则算法,该算法既使用了成熟的关系操作又充分利用先验,在多概念层上交互挖掘关联规则,有很好的实用性。  相似文献   

12.
Mining association rules from large database is very costly.We develop a parallel algorithm for this task on sharedmemory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to scan the database at least two times. In this article, a parallel algorithm Scan Once (SO) has been proposed for SMP,which only scans the database once. And this algorithm is fundamentally different from the known parallel algorithm Count Distribution (CD). It adopts bit matrix to store the database information and gets the support of the frequent itemsets by adopting Vector-And-Operation, which greatly improve the efficiency of generating all frequent itemsets.Empirical evaluation shows that the algorithm outperforms the known one CD algorithm.  相似文献   

13.
随着计算机技术和通信技术的不断发展,用户存储了越来越多、具有很高使用价值的信息,不断涌现的大量信息在给人们带来方便的同时也带来了问题,怎样提取有用信息使得数据挖掘技术应运而生.关联分析是数据挖掘的本质,关联规则挖掘是进行关联分析最常用的方法.在关联规则的Apriori算法的基础上,指出了该算法的不足之处,提出了一种新的改进算法,从而增强了算法的适应性.  相似文献   

14.
认为传统的关联规则挖掘模型主要是针对结构化数据 ,其可信度和支持度不能随环境的变化自适应调节 ,即缺乏自适应性 ,而现实中还存在大量非结构化的数据 .针对传统发现模型的不足提出了一个基于事例的自适应关联规则发现模型 ,它不仅可以处理对非结构化数据的数据挖掘 ,而且还可以随着环境的变化自适应调节支持度和可信度 .  相似文献   

15.
讨论了在大数据库上挖掘关联规则的数组方法.给出了一个数组方法,它效率更高,扫描整个数据库最多两遍.  相似文献   

16.
在不完全数据库中挖掘关联规则是一个重要的数据挖掘问题,其关联规则的支持度和置信度不可能精确计算,但可以估计.基于关联规则支持度和置信度的估计,讨论了不完全数据库中关联规则的挖掘问题.  相似文献   

17.
数据库中标准加权关联规则挖掘算法   总被引:1,自引:0,他引:1       下载免费PDF全文
在原有的关联规则挖掘算法的研究中,认为所有的属性的重要程度相同,提出标准加权关联规则的挖掘算法,能够解决因属性重要程度不一样带来的问题。  相似文献   

18.
一种提取关联规则的数据挖掘快速算法   总被引:8,自引:0,他引:8  
提出了一种从大型数据库中挖掘关联规则的快速算法。该算法以典型的Apriori和DHP算法为基础,提出了中间检查点、等从项目类等概念,并对Apriori中的Apriori-gen算法进行了改进。结果表明,它较Apriori有明显的提高。  相似文献   

19.
基于模糊类层次的概念,讨论了模糊关联规则支持度和置信度的计算,给出一个挖掘广义模糊关联规则的算法,并说明其应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号