首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种双通道可重构14 bit 125 MS/s流水线模数转换器(ADC).该双通道14 bit ADC可工作在并行双通道14 bit 125 MS/s、时间交织14 bit 250 MS/s以及求和15 bit 125 MS/s三种模式.为抑制通道间失配误差的影响,提出一种数模混合前台校准技术.为减少ADC输出端口数目,数据输出由高速串行数据发送器驱动,并且其工作模式有1.75,2,3.5 Gbit/s三种.该ADC电路采用0.18μm 1P5M 1.8 V CMOS工艺实现,测试结果表明,对于相同的10.1 MHz的输入信号,该ADC电路在14 bit 125 MS/s模式下的SNR和SFDR分别为72.5 dBFS和83.1dB,在14 bit 250 MS/s模式下的SNR和SFDR分别为71.3 dBFS和77.6 dB,在15 bit 125 MS/s模式下的SNR和SFDR分别为75.3 dBFS和87.4 dB.芯片总体功耗为461 mW,单通道ADC内核功耗为210 mW,面积为1.3×4 mm~2.  相似文献   

2.
为了在电源管理芯片中完成高精度、低功耗的模数转换,提出了1种自给时钟的增量型Sigma-Delta模数转换器(ADC).该ADC由2阶Sigma-Delta调制器结构组成,使用基于过零检测的开关电容积分器代替了基于运算放大器的开关电容积分器,又通过2阶积分器电路的相互触发产生自给时钟,从而无需外部提供时序信号.该ADC使用0.5μm CMOS工艺,在运行500个周期时可以获得的信号噪声失真比(SNDR)为90.06 d B,有效精度为14.66位,转换时间小于330μs,在5 V供电下功耗为0.317 m W.在保持Sigma-Delta ADC较高精度的同时,通过采用基于零点检测的电路减少了所需的外围电路,从而节省了面积.  相似文献   

3.
为了降低传统增量型Σ-ΔADC在同精度情况下的量化时钟周期数,提高转换速率,提出了1种采用粗细量化的2步式增量放大型ADC.该ADC采用SAR ADC先进行6位粗量化,再采用增量型Σ-ΔADC进行8位高精度位的细量化,通过数字码拼接完成最终量化结果.同时引入了1种增益自举C类反相器技术,有效地降低了供电电压和整体功耗.该ADC使用0.18μm标准CMOS工艺进行了电路实现,在1.2 V供电电压,1 MHz采样频率、10 k S/s的转换速率的情况下,达到了81.26 d B的信噪失真比(SNDR)和13.21位的有效位数(ENOB),最大积分非线性为0.8 LSB.并且该ADC的整体功耗为197μW,可用于低电压低功耗的仪器测量和传感器等领域.  相似文献   

4.
设计了一个10 bit,100 Ms/s视频模拟前端IP核,并用台积电(TSMC)0.18μm 1.8/3.3 V互补金属氧化物半导体(CMOS)纯数字工艺进行了仿真.电路中模拟部分采用3.3 V电源电压,仿真结果显示当输入信号为18 MHz,信号幅度为满幅(单端1 V,差分2 V)时,输出信号信号-噪声-失真比(SNDR)为60 dB.整个电路的功耗为73 mA,版图面积为2 mm×2.5 mm.  相似文献   

5.
提出了一种适用于14bit 200MHz数模转换器的数字校准电路模块.在非校准状态,该模块仅仅将输入数据进行相应的编码转换,在校准状态时,该模块不仅对输入信号流进行编码转换,还提供额外的校准控制信号,用来控制DAC中模拟电路进行校准.该模块采用SMIC CMOS 0.18μm 1P6M工艺,电源电压为1.8V.最终芯片测试结果表明,在200MHz工作频率下,该模块能够将数模转换器的SFDR最大提高27dB.  相似文献   

6.
为实现高速低功耗的模数转换,设计了一个工作电压为3.3 V,采样精度为10 bit,采样频率为40 MS/s,流水线结构的模数转换器(ADC).该ADC基于0.35μm互补金属氧化物半导体(CMOS)工艺,通过优化运算跨导放大器(OTA)和低失调动态比较器电流,提高了转换精度,降低了功耗.ADC采用差分输入输出电路,减小了系统噪声的影响.其信噪比为58.3 dB,有效位数为9.4 bit,核心电路面积为1.2 mm×0.8 mm,功耗小于30 mW.  相似文献   

7.
为了克服传统逐次逼近型模数转换器(SAR ADC)精度低和能量效率低的问题,通过采用新型开关切换策略来提高SAR ADC的能量效率,采用冗余电容阵列和数字纠错技术来提高SAR ADC的精度。电路采用SMIC110nm CMOS工艺实现,并结合Cadence模拟开发套件进行后仿验证。结果表明,在工作电压为1.2 V,采样速率为1 MS/s时,输入0.301 MHz的正弦波,SAR ADC的有效位数(ENOB)达到了13.25 bits,信号噪声失真比(SNDR)为81.55 dB,功耗为181μW;所设计的SAR ADC电路的精度和功耗得到了有效改善。  相似文献   

8.
为提高运算放大器的带内增益和带宽,提出了一款应用于长期演进(LTE)接收机中宽带Δ-∑模数转换器(ADC)的四级运算放大器.该运算放大器采用前馈Gm-C和密勒补偿相结合的混合型频率补偿方法,以保证运算放大器的稳定性.文中采用0.13μm1P6M CMOS工艺设计了一款高性能的四级运算放大器,并将该运算放大器应用于宽带Δ-∑ADC中.测试结果显示:该运算放大器在1.5 V供电电压下可获得72.8 d B的直流增益、442 MHz的增益带宽积和101 V/μs的转换率;在相同的功耗和带宽下,该放大器的带内(0~10 MHz)增益比传统的两级放大器提高了6 d B以上;采用该运算放大器的宽带Δ-∑ADC在10 MHz的信号带宽下具有68 d B的信噪比和78 d B的无杂散动态范围.  相似文献   

9.
针对植入式医疗设备中关键模块模数转换器(ADC)的超低功耗设计问题,以低功耗的逐次逼近型ADC为基础,提出了低位逐次逼近量化逻辑的模数转换器。量化逻辑主要用于以心电信号为代表的低活动度生物信号,在采用固定分辨率和采样率的情况下,根据信号的变化幅度调整量化次数,以达到降低功耗和压缩数据量的目的,在信号处于基线或缓变间期最少只需要3次量化就可以得到ADC转换结果。采用Global Foundry 0.18m标准CMOS工艺对该ADC进行了电路和版图设计,仿真结果显示,在1.8V的电源电压和1kHz的采样率下,ADC的有效位为9.6b,核心电路平均电流功耗为64~131nA。该低位逐次逼近模数转换器特别适合应用于植入或可穿戴医疗设备中低活动度生物信号的模数转换,在保证量化精度的同时显著降低了ADC的功耗。  相似文献   

10.
针对当前物联网技术对功耗的严格要求,设计了一种基于分段电容的低功耗SAR ADC电路.电路通过使用分离电容阵列来降低整个CDAC所需要的单位电容数和ADC的功耗.同时采用了分离电容校正技术来降低整体CDAC的非线性和失调校正技术来降低比较器电路的失调.在0.18,mm CMOS工艺下完成了一款10-bit 10-Msample/s的电路原型设计及相应的版图设计和验证工作,带有PAD的芯片整体面积为1,2mm.芯片后仿真结果表明:该转换器在校正情况下,4.89,MHz输入信号频率下信号噪声谐波比(SFDR)为61.43,dB,比不校正提高了54%,;有效位数达到9.90,bit,比不校正提高了3.7,bit;在1.8,V电源电压下功耗仅为255.61,mW.  相似文献   

11.
为了降低流水线模数转换器功耗与提升输入信号范围,设计了一种无采样保持运放前端电路. 移除采样保持运放降低了功耗,并改进开关时序进一步降低电路功耗;同时改进传统开关电容比较器输入,使得模数转换器可达到0 ~ 3.3 V满电源电压的量化范围. 将设计的无采样保持运放前端电路应用在一款低功耗12位50 MS/s流水线模数转换器进行验证,采用0.18 μm 1P6M工艺进行流片,芯片面积为1.95 mm2. 测试结果表明:3.3 V电压下,采样率为50 MS/s、输入信号频率为5.03 MHz时,信噪失真比(SNDR)为64.67 dB,无杂散动态范围(SFDR)为72.9 dB,功耗为65 mW.  相似文献   

12.
流水线模数转换器的一种数字校准技术   总被引:1,自引:1,他引:0  
为了降低流水线模数转换器中数字校准电路的规模和功耗,提出了一种新的基于信号统计规律的后台数字校准技术.该技术采用自适应搜索算法和二元单调函数的幅值增量比较算法,分别对基于信号统计规律的数字校准技术中的距离估计电路和查找表进行优化设计,减少了距离估计所需的数字电路和查找表所需的ROM空间,极大地降低了数字电路的规模和功耗.应用该校准技术实现了一个12位、采样率为4×107 s-1的流水线模数转换器.测试结果表明,同优化前相比,该芯片数字电路的功耗降低了931%,所需ROM空间减小了95%.整个芯片采用SMIC 0.18μm CMOS工艺设计,总功耗为210 mW,芯片面积为3.3 mm×3.7 mm.  相似文献   

13.
提出了一种用于CMOS图像传感器的数字双采样10位列级模数转换器.比较器采用失调消除技术,数字双采样通过加/减计数器实现,使复位信号和像素信号的量化结果在数字域做差,消除了像素输出产生的固定模式噪声;列电路由一个比较器、一个计数器和一个锁存选通器组成.采用GSMC 0.18μm标准CMOS工艺对电路进行设计,一个完整的A/D转换时间为11μs,使用Cadence spectre进行仿真,结果表明:ADC的信噪失真比为57.86dB,有效位数9.32,列电路功耗为58.24μW,由比较器的失调和延迟产生的误差可以减小50%.  相似文献   

14.
基于CMOS 90 nm工艺设计了一款采用时域比较器的10位逐次逼近型模数转换器(successive approximation register analog-to-digital convertor,SAR ADC).与传统动态比较器相比,时域比较器利用差分多级电压控制型延时线将电压信号转为时间信号,并通过鉴相器鉴别相位差而得到比较器结果,减小了共模偏移对比较器的影响和静态功耗.同时,电路采用部分单调式的电容阵列电压转换过程,有效减小电容阵列总电容及其功耗.仿真结果表明,在电源电压1 V,采样率308 kS/s,信号幅度0.9 V的情况下,有效位数(ENOB)为9.45 bits,功耗为13.48 μW.   相似文献   

15.
提出了一种基于伪随机补偿技术的流水线模数转换器(ADC)子级电路.该子级电路能够对比较器失调和电容失配误差进行实时动态补偿.误差补偿采用伪随机序列控制比较器阵列中参考比较电压的方式实现.比较器的高低位被随机分配,以消除各比较器固有失调对量化精度的影响,同时子ADC输出的温度计码具有伪随机特性,可进一步消除MDAC电容失配误差对余量输出的影响.基于该子级电路设计了一种12位250 MS/s流水线ADC,电路采用0.18μm 1P5M1.8 V CMOS工艺实现,面积为2.5 mm2.测试结果表明,该ADC在全速采样条件下对20 MHz输入信号的信噪比(SNR)为69.92 dB,无杂散动态范围(SFDR)为81.17 dB,积分非线性误差(INL)为-0.4~+0.65 LSB,微分非线性误差(DNL)为-0.2~+0.15 LSB,功耗为320 mW.  相似文献   

16.
设计了一种应用于数字电源控制器的模数转换器,和传统的模数转换器不同,该模数转换器采用两步转换的结构,功耗低,面积小.通过模数转换器与数字脉宽调制器共用延迟锁定环,面积和功耗进一步降低;通过在斜波信号发生器中使用电流舵技术,提高了斜波信号发生器的线性度;通过数字逻辑的优化设计,解决了时间数字转换中两步量化同步和匹配的问题.该模数转换器采样频率为1MS/s,目标有效位为8bit.芯片在SMIC0.13μm CMOS工艺下流片,功耗为60μW,面积为0.03mm2,有效位达到6.5bit.  相似文献   

17.
设计了一种具有自动功率控制功能的激光驱动器电路.为了获得良好的性能,该驱动器采用级联差分放大器和源极跟随器分别进行信号放大和级间阻抗匹配.该电路的实现采用了0.35 μm标准CMOS工艺.对该电路进行了测试,测试结果表明,在2.5和5 Gbit/s速率下,电路输出信号眼图清晰.在5 V电源电压、2.5 Gbit/s数据速率下,该驱动器可提供0~68 mA范围内的调制电流,满足长距离光纤通信系统的要求.电路典型功耗480 mW,芯片面积为0.57 mm2.  相似文献   

18.
研究了模数转换器(ADC)的数字后台校准技术,提出了一种针对2.5 b/级高速高精度流水线ADC的数字后台校准算法.在2.5b/级电容翻转式余量增益电路(MDAC)中注入与输入信号相关的抖动信号,提取MDAC中由于电容失配和放大器增益有限性造成的非线性误差,并在最终的数字输出端对这些误差进行校准.文中提出的数字后台校准算法具有电路实现简单、不中断ADC正常工作、适合高速高精度流水线ADC等优点,能有效地降低电容失配和放大器有限增益等非理想因素对流水线ADC精度的影响.仿真结果表明,经校准后的ADC信号噪声失真比可从63.3dB提高到78.7dB,无杂散动态范围由63.9 dB提高到91.8 dB.  相似文献   

19.
为提高低功耗条件下运放电路的工作速度,基于Class-AB复合型差分对、非线性电流镜传输、交叉耦合对管正反馈3种结构的有机组合,提出了一种高速运算跨导放大电路(OTA)的结构设计方案.该方案在低功耗条件下,电路具有优异的摆率倍增性能,同时电路小信号带宽与低频增益得到一定程度的改善.电路采用CSMC 0.5μm CMOS工艺进行设计并完成MPW流片.在5 V电源电压下测试得到的电路静态功耗仅为11.2μA,最大上升沿与下降沿摆率分别为10和2 V/μs,低频增益60 dB以上,单位增益带宽达到3 MHz.结果表明,新型Class-AB OTA电路比同类参考OTA电路具有更高的大信号瞬态响应品质因子.  相似文献   

20.
设计了一种用于微悬臂梁红外焦平面读出电路的片上 ADC。该 ADC 采用流水线结构实现, 采用带溢出检测的多位第一级和后级功耗逐级缩减的方案优化系统功耗, 提高线性度。该设计采用 0.35 μm 的 CMOS 工艺流片验证。测试结果表明: 5V 电源电压、10M 采样率时电路总功耗为98 mW, 微分非线性和积分非线性分别为 -0.8/0. 836 LSB 和 - 0. 9 / 1. 6 LSB; 输入频率为 1 MHz 时, SFDR 和 SNDR 分别为82 和 67 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号