共查询到18条相似文献,搜索用时 62 毫秒
1.
通过特殊的变形建立了求解矩阵方程AXB+CYD=E最小二乘解的迭代算法,并证明了该算法的收敛性;对于任意给定矩阵的最佳逼近解也可以通过此方法得到. 相似文献
2.
臧正松 《安徽师范大学学报(自然科学版)》2005,28(3):258-262
考虑以下问题:问题1:给定A∈Rm×n,B∈Rm×l,C∈Rm×m,L={(X,Y)|AXAT BYBT=C,X∈SRn×n,Y∈SRl×l}≠φ,找(X⌒,Y⌒)∈L,使得‖(X⌒,Y⌒)‖=(‖X‖2 ‖Y‖2)(1)/(2)=min.问题2:任意给定(X∧)∈Rn×n,(Y∧)∈Rl×l,找(X∧,Y∧)∈L,使得‖(X∧)-(X~)‖2 ‖(Y∧)-(Y~)‖2=min(X,Y)∈L(‖X-(X~)‖2 ‖Y-(Y~)‖2).讨论了矩阵方程AXAT BYBT=C有解的充要条件,得到了L的具体表达式,给出了问题1与问题2的唯一解证明与显式表示. 相似文献
3.
鉴于用矩阵分解的方法求解多变量矩阵方程的复杂性,本文提出了一类迭代算法用于求解多变量矩阵方程的对称最小二乘解并证明了其收敛性,而且在选取特殊的初始对称矩阵组时,能得到它的极小范数解组.另外,给定任意矩阵组,利用此方法可得到它的最佳逼近对称解组.数值试验表明,这种方法相当有效. 相似文献
4.
矩阵方程ATXA=B的对称正交反对称解及其最佳逼近 总被引:1,自引:0,他引:1
通过应用广义奇异值分解定理,得到了矩阵方程A^TXA=B的对称正交反对称解存在的一个充要条件,导出了通解表达式,对给定的矩阵,求得了矩阵方程的最佳逼近对称正交反对称解,同时也获得了它的最小范数解。 相似文献
5.
6.
刘莉 《兰州理工大学学报》2011,37(6):148-153
提出一类求矩阵方程AXB+ CYD=E的中心对称最小二乘解的迭代算法,并证明迭代算法的收敛性.在不考虑舍入误差时,迭代算法能够在有限步计算后得到矩阵方程的中心对称最小二乘解;选取特殊的初始矩阵时,能够得到矩阵方程的的极小范数中心对称最小二乘解.同时能够得到给定矩阵的最佳逼近中心对称矩阵.数值例子表明,这种方法是有效的. 相似文献
7.
利用矩阵对的标准相关分解、广义奇异值分解和投影定理,给出了矩阵方程ATXA=B的双反对称最小二乘解的一般表达式,在此基础上,求出了给定矩阵的最佳逼近. 相似文献
8.
文章首先考虑了如下问题:给定矩阵A,B∈Cn×m,求循环矩阵X∈CIRn×n,使得min||AX—B||。给X出了问题具有循环矩阵解的条件和解的一般表达式,若用SE表示上述问题解的集合,文章还考虑了最佳逼近问题:给定X*∈CIRn×n,求X∈SE,使得minX∈SE||X-X*||=||X-X*||,其中||·||表示矩阵的Frobenius范XESE数,证明了问题存在唯一解,给出了其唯一解的一般表达式。 相似文献
9.
首先给出了4种情况下李亚普诺夫方程AX+XB=C解的简洁表达式,然后,通过前述结论得出了矩阵方程AX+YB=E的最小二乘解以及极小范数最小二乘解的解析式,并且,通过相应数值例子验证了相关结论. 相似文献
10.
利用矩阵对的广义奇异值分解,给出了矩阵方程AXB=C广义中心对称解的充要条件和通解表达式,证明了在矩阵方程AXB=C的广义中心对称解集合中存在唯一与给定矩阵X*的最佳逼近解,给出了求解最佳逼近解的数值算法和数值例子. 相似文献
11.
应用复合最速下降法,给出了在加权范数下求解矩阵方程AXB+CYD=E的对称最佳逼近解的一种迭代算法。在有限的误差范围内,对任意初始矩阵X0、Y0,运用迭代算法,经过有限步可得到矩阵方程的最佳逼近解,并给出的数值例子证实了该算法的有效性。 相似文献
12.
采用迭代法讨论了矩阵方程的对称反自反矩阵解及其最佳逼近问题.证明了(i)若问题Ⅰ有解,则可在有限步求出一个迭代解,(ii)若取特殊初始矩阵,则可迭代出问题Ⅰ的极小范数解;并给出了最佳逼近问题的极小范数解. 相似文献
13.
利用广义奇异值分解定理,得到了矩阵方程AHXA=B的反自反解存在的一个充要条件,并获得了相应的通解表达式和最佳逼近解,最后获得了最小范数解 相似文献
14.
利用广义奇异值分解定理,得到了矩阵方程A^HXA=B的反自反解存在的一个充要条件,并获得了相应的通解表达式和最佳逼近解,最后获得了最小范数解。 相似文献
15.
一类矩阵方程的反对称正交反对称解及其最佳逼近 总被引:3,自引:0,他引:3
定义了一种新的矩阵类:反对称正交反对称矩阵,研究了一类矩阵方程的反对称正交反对称解的存在性及其最佳逼近问题。利用矩阵的广义奇异值分解,得到了该矩阵方程有反对称正交反对称解的充要条件及其通解表达式,并且给出了矩阵方程的解集合中与给定矩阵的最佳逼近。 相似文献
16.
在给定对称正交矩阵P的情形下,文章主要讨论了矩阵方程ATXA=B的对称正交对称最小二秉解,得到了解的一般表达式.并且对于任意给定的矩阵X*,在最小二来解集中得到了X*的最佳逼近解. 相似文献
17.
二次特征值反问题的中心斜对称解及其最佳逼近 总被引:1,自引:0,他引:1
利用矩阵的奇异值分解,讨论构造n阶中心斜对称矩阵M,C和K,使得二次束Q(λ)=λ2M λC K具有给定特征值和特征向量的特征值反问题.首先证明反问题是可解的,并给出了解集SMCK的通式.然后考虑从解集SMCK中求给定矩阵[M~,~C,~K]的最佳逼近问题,给出了最佳逼近解的存在唯一性及表达式. 相似文献
18.
矩阵方程AHXA=B的自反解及其最佳逼近 总被引:1,自引:0,他引:1
通过广义奇异值分解定理,得到了矩阵方程AHXA=B的自反解存在的一个充要条件,并导出了这个矩阵方程的与已知矩阵最佳逼近的自反解. 相似文献