首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
提出了利用贝叶斯正则化BP神经网络对股票指数进行预测.通过对比实验表明,贝叶斯正则化的BP神经网络比相同条件下采用其他改进算法有较好的泛化能力,对股票指数预测有很好的效果.  相似文献   

2.
质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电堆具有输入输出关系复杂、非线性强等特点,获得精确的电堆模型是PEMFC系统优化控制的基础.文章针对PEMFC电堆特点,提出一种改进BP(back propagation)神经网络的PEMFC电堆建模方法.利用BP神经...  相似文献   

3.
基于EOF迭代的月径流长期预报   总被引:2,自引:0,他引:2  
应用经验正交函数分析方法,以月平均500hPa,100hPa高度场及月平均海温场为预报因子,对广东省Weng江流域的月径流进行预报。结果表明,基于EOF迭代的预报方法是一种有效的月径流长期预报新方法,具有明显的应用价值。  相似文献   

4.
针对传统BP神经网络在深基坑施工开挖变形的预测,基坑的安全性判定仅利用监测的最终数值而无法全面服务于深基坑工程,提出了一种遗传算法(Genetic Algorithm, GA)和贝叶斯正则化算法(Bayesian Regularization, BR)组合优化传统BP神经网络的预测模型,在优化预测模型中加入了影响深基坑安全稳定的客观因素及人为主观因素,进一步提高了BP神经网络全局优化能力以及泛化能力.研究结果表明:该组合优化方法对深基坑地表沉降和水平位移变形预测的平均相对误差分别为0.32%和0.59%,表现出较高的预测精度.该组合优化模型首次在深基坑变形领域验证了应用的可行性,为深基坑变形预测提供了新的思路和方法.  相似文献   

5.
贝叶斯正则化的 BP 神经网络在经济预测中的应用   总被引:3,自引:0,他引:3  
本文应用Bayesian正则化算法改进BP神经网络泛化能力.通过对湖北省1985年-2004年关于经济发展水平的数据进行拟和以及预测,结果表明采用Bayesian正则化算法比相同条件下采用其他改进算法泛化能力要好,收敛速度快、预测精度高,方法简单,操作方便.实例分析表明, 贝叶斯正则化算法优化BP神经网络的方法是令人满意的,对经济预测有良好的预测效果.  相似文献   

6.
长期径流预报的灰色双向差分模型   总被引:1,自引:0,他引:1  
本文基于灰色预测原理和双向差分理论,提出长期径流预报的灰色双向差分模型,实例应用表明,该模型由于获取了较多的历史径流信息,不仅能得到较为准确的径流预报值的拟合结果,还可得到非常可靠的长期径流趋势预报结果。  相似文献   

7.
《河南科学》2016,(4):601-605
径流预报的信息有很大的相关性,这是必须在预报工作中避免的,同时,这些信息的维度较高,且以往处理这些信息的数学模型计算复杂度较高.针对以上问题提出了一种混合主成分分析方法(PCA,Principal Component Analysis)和改进BP(Improved Back Propagation)神经网络模型的中长期径流预报模型(PCA-IBP),此种方法可以很好地避免以上不足,可以进一步提高模型计算效率.实际数据验证表明,提出模型预报的精准程度以及效率都较传统的BP神经网络预报模型有所改善.  相似文献   

8.
神经网络泛化增强技术研究   总被引:3,自引:1,他引:2  
综述和比较现有改善神经网络泛化能力的方法,特别对其中的5种实用方法进行详细的理论分析,指出各自的优缺点.实验中将各种方法用于函数逼近与数据分类两大领域,通过泛化能力与运行时间的对比,给出其性能排序.发现贝叶斯自适应正则化方法性能最好,其次是正则化法、逐步增加法、剪枝法;早期停止法速度最快,但是用于函数逼近效果不佳,只能用于数据分类.  相似文献   

9.
MATLAB是进行神经网络系统设计及多元统计分析的有力工具.利用MATLAB6.5对月平均降水量的前期预报因子进行主成分分析,实现样本的最优压缩,从而降低样本的维数,建立起基于主成分分析的神经网络广西北部地区5月平均降水预测模型.计算结果表明,基于主成分分析的神经网络模型在预测中与多元回归模型相比有较好效果.  相似文献   

10.
采用贝叶斯正则化神经网络(BRNN)对67种金属升华热Ls和升华熵△Ss进行了预测.对网络结构、训练集、预测集以及学习次数进行了优化,并用独立预测样本对贝叶斯正则化神经网络作了检验.预测结果表明,在推广能力方面,贝叶斯正则化神经网络优于熟知的反向传播(BP)神经网络和多元线性回归方法(MLR).它可望成为元素和化合物构效关系研究的辅助手段.  相似文献   

11.
【目的】分季节预测PM2.5浓度值,利用PCA方法对数据进行降维,分析季节及气象因素对PM2.5的影响,在提高预测准确率的同时降低时间复杂度。【方法】以合肥市2014—2017年的PM10、SO2、CO2、CO、O3浓度值,以及同时段的气象因素值,对PM2.5浓度进行预测。数据分析中发现PM2.5在不同季节浓度差异较大,故本研究选择分季节进行预测;为了提高预测准确率,加入如风力、温度、湿度、气压等气象因素进行预测,同时采用主成分分析(PCA)的方法进行数据降维,将降维后的数据再输入BP神经网络模型进行预测。【结果】实验采用3组实验进行对比:5种污染物指标(PM2.5-5)预测PM2.5、加入气象因素的综合12项指标(PM2.5-12)预测PM2.5、对综合指标进行PCA处理后的(PM2.5-PCA)预测PM2.5。实验结果表明:4个季节的PM2.5浓度值有较大变化,均方根误差(RMSE)的差值较大;采用PM2.5-PCA的方法,在任何季节的RMSE均有降低,相关系数(r)均有所提高。【结论】PM2.5浓度具有季节性特征,采用季节性预测方法可以提高预测准确率;同时采用PCA方法进行降维,可以在保证准确率的同时降低预测时间复杂度。  相似文献   

12.
为了提高房价预测精度,采用基于主成分分析的BP神经网络预测模型.首先运用主成分分析对影响房价指标重新组合生成新的综合指标,然后采用非线性预测能力非常强的BP神经网络对其进行建模,并对房价进行预测.仿真结果表明,基于主成分分析的BP神经网络的房价仿真值与历史值的系统总误差只有0.52%,可作为房价预测的一种行之有效的方法.  相似文献   

13.
为准确判别矿井涌水水源,针对矿井各主要含水层的水化学特征数据样本,利用主成分分析法消除变量中的重复信息,采用BP算法对网络进行训练,实现对随机挑选样本的判别,并与Bayes判别结果进行比较.结果表明:主成分分析与BP神经网络相结合的方法判别涌水水源的正确率为82.35%,优于Bayes判别法.该研究为有效开展矿井防治水工作提供了参考.  相似文献   

14.
基于动态贝叶斯网的状态预测   总被引:1,自引:0,他引:1  
 由于状态的取值不仅依赖于前一时刻状态而且还受到多种随机因素的影响,因此预测模型应当能够表示出变量之间的这些依赖关系.而动态贝叶斯网络是解决此问题的一个有效工具.基于动态贝叶斯网提出了一种状态预测模型,并根据随机事件之间的互信息量提出了节点之间的支持度,还提出了利用支持度的证据传播算法来修正预测结果的方法.最后,给出了综合预测过程.  相似文献   

15.
提高中国粮食生产量的预测精度与效率是人们关注的一个重要问题.对RBF神经网络的结构、特性和训练算法作了简要的概述.根据粮食产量与其影响因素之间存在的映射关系,应用RBF神经网络建立了多因素非线性时间序列预测模型,并进行了仿真试验.结果表明,用RBF神经网络进行粮食生产预测得到了十分满意的结果.  相似文献   

16.
针对无线传感器网络传输过程中容易受到噪音干扰的问题,提出了一种新的业务流预测算法AWNNP(Ant colony-based Wavelet Neural Network Prediction).该算法首先利用小波变换对业务流进行分解,并将其小波系数和尺度系数作为样本数据.其次,结合蚁群算法和神经网络来训练样本数据,采用小波模型重构进行重构,以此获得业务流的预测数据.同时,通过仿真实验对比,并分析了小波神经网络预测算法和BP神经网络预测算法,实验结果表明,AWNNP算法性能较优,其误差为16.21%.  相似文献   

17.
利用环形线圈车辆检测器,对不同车辆经过环形线圈时产生电磁感应数据进行采集,再对这些维数较大的车辆感应数据,运用主成分分析法对其降维处理,以减少ART2神经网络输入维数,便于对这些数据进一步分类. 通过实验研究可知,这种主成分分析与ART2神经网络相结合的分类方法,使数据通过降维处理,并减少网络的输入维数,不仅大大简化了网络结构,还明显提高了分类的准确性、快速性,加快了网络的学习速率,而且从分类效果上看,也具有很好的正确率.  相似文献   

18.
利用残值学习算法进行小波节点的选择,利用Akaike 准则确定预测模型的结构,采用误差反传方法在线调整网络连接参数.通过建立的自适应神经网络模型有效辨识船舶操纵运动动态.船舶航向预报仿真结果显示,基于小波神经网络的船舶航向预测器可以较高精度预报船舶操纵运动过程中船舶航向的变化.  相似文献   

19.
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号