首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Z  Herbert TD 《Nature》2004,427(6976):720-723
Many records of tropical sea surface temperature and marine productivity exhibit cycles of 23 kyr (orbital precession) and 100 kyr during the past 0.5 Myr (refs 1-5), whereas high-latitude sea surface temperature records display much more pronounced obliquity cycles at a period of about 41 kyr (ref. 6). Little is known, however, about tropical climate variability before the mid-Pleistocene transition about 900 kyr ago, which marks the change from a climate dominated by 41-kyr cycles (when ice-age cycles and high-latitude sea surface temperature variations were dictated by changes in the Earth's obliquity) to the more recent 100-kyr cycles of ice ages. Here we analyse alkenones from marine sediments in the eastern equatorial Pacific Ocean to reconstruct sea surface temperatures and marine productivity over the past 1.8 Myr. We find that both records are dominated by the 41-kyr obliquity cycles between 1.8 and 1.2 Myr ago, with a relatively small contribution from orbital precession, and that early Pleistocene sea surface temperatures varied in the opposite sense to local annual insolation in the eastern equatorial Pacific Ocean. We conclude that during the early Pleistocene epoch, climate variability at our study site must have been determined by high-latitude processes that were driven by orbital obliquity forcing.  相似文献   

2.
Moreno PI  Jacobson GL  Lowell TV  Denton GH 《Nature》2001,409(6822):804-808
Understanding the relative timings of climate events in the Northern and Southern hemispheres is a prerequisite for determining the causes of abrupt climate changes. But climate records from the Patagonian Andes and New Zealand for the period of transition from glacial to interglacial conditions--about 14.6-10 kyr before present, as determined by radiocarbon dating--show varying degrees of correlation with similar records from the Northern Hemisphere. It is necessary to resolve these apparent discrepancies in order to be able to assess the relative roles of Northern Hemisphere ice sheets and oceanic, atmospheric and astronomical influences in initiating climate change in the late-glacial period. Here we report pollen records from three sites in the Lake District of southern Chile (41 degrees S) from which we infer conditions similar to modern climate between about 13 and 12.2 14C kyr before present (BP), followed by cooling events at about 12.2 and 11.4 14C kyr BP, and then by a warming at about 9.8 14C kyr BP. These events were nearly synchronous with important palaeoclimate changes recorded in the North Atlantic region, supporting the idea that interhemispheric linkage through the atmosphere was the primary control on climate during the last deglaciation. In other regions of the Southern Hemisphere, where climate events are not in phase with those in the Northern Hemisphere, local oceanic influences may have counteracted the effects that propagated through the atmosphere.  相似文献   

3.
Maher BA  Dennis PF 《Nature》2001,411(6834):176-180
The low concentration of atmospheric CO2 inferred to have been present during glacial periods is thought to have been partly caused by an increased supply of iron-bearing dust to the ocean surface. This is supported by a recent model that attributes half of the CO2 reduction during past glacial stages to iron-stimulated uptake of CO2 by phytoplankton in the Southern Ocean. But atmospheric dust fluxes to the Southern Ocean, even in glacial periods, are thought to be relatively low and therefore it has been proposed that Southern Ocean productivity might be influenced by iron deposited elsewhere-for example, in the Northern Hemisphere-which is then transported south via ocean circulation (similar to the distal supply of iron to the equatorial Pacific Ocean). Here we examine the timing of dust fluxes to the North Atlantic Ocean, in relation to climate records from the Vostok ice core in Antarctica around the time of the penultimate deglaciation (about 130 kyr ago). Two main dust peaks occurred 155 kyr and 130 kyr ago, but neither was associated with the CO2 rise recorded in the Vostok ice core. This mismatch, together with the low dust flux supplied to the Southern Ocean, suggests that dust-mediated iron fertilization of the Southern Ocean did not significantly influence atmospheric CO2 at the termination of the penultimate glaciation.  相似文献   

4.
Bintanja R  van de Wal RS 《Nature》2008,454(7206):869-872
The onset of major glaciations in the Northern Hemisphere about 2.7 million years ago was most probably induced by climate cooling during the late Pliocene epoch. These glaciations, during which the Northern Hemisphere ice sheets successively expanded and retreated, are superimposed on this long-term climate trend, and have been linked to variations in the Earth's orbital parameters. One intriguing problem associated with orbitally driven glacial cycles is the transition from 41,000-year to 100,000-year climatic cycles that occurred without an apparent change in insolation forcing. Several hypotheses have been proposed to explain the transition, both including and excluding ice-sheet dynamics. Difficulties in finding a conclusive answer to this palaeoclimatic problem are related to the lack of sufficiently long records of ice-sheet volume or sea level. Here we use a comprehensive ice-sheet model and a simple ocean-temperature model to extract three-million-year mutually consistent records of surface air temperature, ice volume and sea level from marine benthic oxygen isotopes. Although these records and their relative phasings are subject to considerable uncertainty owing to limited availability of palaeoclimate constraints, the results suggest that the gradual emergence of the 100,000-year cycles can be attributed to the increased ability of the merged North American ice sheets to survive insolation maxima and reach continental-scale size. The oversized, wet-based ice sheet probably responded to the subsequent insolation maximum by rapid thinning through increased basal-sliding, thereby initiating a glacial termination. Based on our assessment of the temporal changes in air temperature and ice volume during individual glacials, we demonstrate the importance of ice dynamics and ice-climate interactions in establishing the 100,000-year glacial cycles, with enhanced North American ice-sheet growth and the subsequent merging of the ice sheets being key elements.  相似文献   

5.
The Milankovitch theory of climate change proposes that glacial-interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination, because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations.  相似文献   

6.
Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles   总被引:21,自引:0,他引:21  
Rutherford S  D'Hondt S 《Nature》2000,408(6808):72-75
Between 1.5 and 0.6 Myr ago, the period of the Earth's glacial cycles changed from 41 kyr, the period of the Earth's obliquity cycles, to 100 kyr, the period of the Earth's orbital eccentricity, which has a much smaller effect on global insolation. The timing of this transition and its causes pose one of the most perplexing problems in palaeoclimate research. Here we use complex demodulation to examine the phase evolution of precession and semiprecession cycles--the latter of which are phase-coupled to both precession and eccentricity--in the tropical and extratropical Atlantic Ocean. We find that about 1.5 Myr ago, tropical semiprecession cycles (with periods of about 11.5 kyr) started to propagate to higher latitudes, coincident with a growing amplitude envelope of the 100-kyr cycles. Evidence from numerical models suggests that cycles of about 10 kyr in length may be required to explain the high amplitude of the 100-kyr cycles. Combining our results with consideration of a modern analogue, we conclude that increased heat flow across the equator or from the tropics to higher latitudes around 1.5 Myr ago strengthened the semiprecession cycle in the Northern Hemisphere, and triggered the transition to sustained 100-kyr glacial cycles.  相似文献   

7.
Kashiwaya K  Ochiai S  Sakai H  Kawai T 《Nature》2001,410(6824):71-74
Quaternary records of climate change from terrestrial sources, such as lake sediments and aeolian sediments, in general agree well with marine records. But continuous records that cover more than the past one million years were essentially unavailable until recently, when the high-sedimentation-rate site of Lake Baikal was exploited. Because of its location in the middle latitudes, Lake Baikal is highly sensitive to insolation changes and the entire lake remained uncovered by ice sheets throughout the Pleistocene epoch, making it a valuable archive for past climate. Here we examine long sediment cores from Lake Baikal that cover the past 12 million years. Our record reveals a gradual cooling of the Asian continental interior, with some fluctuations. Spectral analyses reveal periods of about 400 kyr, 600 kyr and 1,000 kyr, which may correspond to Milankovitch periods (reflecting orbital cycles). Our results indicate that changes in insolation were closely related to long-term environmental variations in the deep continental interior, over the past 12 million years.  相似文献   

8.
In agreement with the Milankovitch orbital forcing hypothesis it is often assumed that glacial-interglacial climate transitions occurred synchronously in the Northern and Southern hemispheres of the Earth. It is difficult to test this assumption, because of the paucity of long, continuous climate records from the Southern Hemisphere that have not been dated by tuning them to the presumed Northern Hemisphere signals. Here we present an independently dated terrestrial pollen record from a peat bog on South Island, New Zealand, to investigate global and local factors in Southern Hemisphere climate changes during the last two glacial-interglacial cycles. Our record largely corroborates the Milankovitch model of orbital forcing but also exhibits some differences: in particular, an earlier onset and longer duration of the Last Glacial Maximum. Our results suggest that Southern Hemisphere insolation may have been responsible for these differences in timing. Our findings question the validity of applying orbital tuning to Southern Hemisphere records and suggest an alternative mechanism to the bipolar seesaw for generating interhemispheric asynchrony in climate change.  相似文献   

9.
Wang Y  Cheng H  Edwards RL  Kong X  Shao X  Chen S  Wu J  Jiang X  Wang X  An Z 《Nature》2008,451(7182):1090-1093
High-resolution speleothem records from China have provided insights into the factors that control the strength of the East Asian monsoon. Our understanding of these factors remains incomplete, however, owing to gaps in the record of monsoon history over the past two interglacial-glacial cycles. In particular, missing sections have hampered our ability to test ideas about orbital-scale controls on the monsoon, the causes of millennial-scale events and relationships between changes in the monsoon and climate in other regions. Here we present an absolute-dated oxygen isotope record from Sanbao cave, central China, that completes a Chinese-cave-based record of the strength of the East Asian monsoon that covers the past 224,000 years. The record is dominated by 23,000-year-long cycles that are synchronous within dating errors with summer insolation at 65 degrees N (ref. 10), supporting the idea that tropical/subtropical monsoons respond dominantly and directly to changes in Northern Hemisphere summer insolation on orbital timescales. The cycles are punctuated by millennial-scale strong-summer-monsoon events (Chinese interstadials), and the new record allows us to identify the complete series of these events over the past two interglacial-glacial cycles. Their duration decreases and their frequency increases during glacial build-up in both the last and penultimate glacial periods, indicating that ice sheet size affects their character and pacing. The ages of the events are exceptionally well constrained and may thus serve as benchmarks for correlating and calibrating climate records.  相似文献   

10.
During the last glacial period, large millennial-scale temperature oscillations--the 'Dansgaard/Oeschger' cycles--were the primary climate signal in Northern Hemisphere climate archives from the high latitudes to the tropics. But whether the influence of these abrupt climate changes extended to the tropical and subtropical Southern Hemisphere, where changes in insolation are thought to be the main direct forcing of climate, has remained unclear. Here we present a high-resolution oxygen isotope record of a U/Th-dated stalagmite from subtropical southern Brazil, covering the past 116,200 years. The oxygen isotope signature varies with shifts in the source region and amount of rainfall in the area, and hence records changes in atmospheric circulation and convective intensity over South America. We find that these variations in rainfall source and amount are primarily driven by summer solar radiation, which is controlled by the Earth's precessional cycle. The Dansgaard/Oeschger cycles can be detected in our record and therefore we confirm that they also affect the tropical hydrological cycle, but that in southern subtropical Brazil, millennial-scale climate changes are not as dominant as they are in the Northern Hemisphere.  相似文献   

11.
Noren AJ  Bierman PR  Steig EJ  Lini A  Southon J 《Nature》2002,419(6909):821-824
For the purpose of detecting the effects of human activities on climate change, it is important to document natural change in past climate. In this context, it has proved particularly difficult to study the variability in the occurrence of extreme climate events, such as storms with exceptional rainfall. Previous investigations have established storm chronologies using sediment cores from single lakes, but such studies can be susceptible to local environmental bias. Here we date terrigenous inwash layers in cores from 13 lakes, which show that the frequency of storm-related floods in the northeastern United States has varied in regular cycles during the past 13,000 years (13 kyr), with a characteristic period of about 3 kyr. Our data show four peaks in storminess during the past 14 kyr, approximately 2.6, 5.8, 9.1 and 11.9 kyr ago. This pattern is consistent with long-term changes in the average sign of the Arctic Oscillation, suggesting that modulation of this dominant atmospheric mode may account for a significant fraction of Holocene climate variability in North America and Europe.  相似文献   

12.
Laepple T  Werner M  Lohmann G 《Nature》2011,471(7336):91-94
The Milankovitch theory states that global climate variability on orbital timescales from tens to hundreds of thousands of years is dominated by the summer insolation at high northern latitudes. The supporting evidence includes reconstructed air temperatures in Antarctica that are nearly in phase with boreal summer insolation and out of phase with local summer insolation. Antarctic climate is therefore thought to be driven by northern summer insolation. A clear mechanism that links the two hemispheres on orbital timescales is, however, missing. We propose that key Antarctic temperature records derived from ice cores are biased towards austral winter because of a seasonal cycle in snow accumulation. Using present-day estimates of this bias in the 'recorder' system, here we show that the local insolation can explain the orbital component of the temperature record without having to invoke a link to the Northern Hemisphere. Therefore, the Antarctic ice-core-derived temperature record, one of the best-dated records of the late Pleistocene temperature evolution, cannot be used to support or contradict the Milankovitch hypothesis that global climate changes are driven by Northern Hemisphere summer insolation variations.  相似文献   

13.
Sime LC  Wolff EW 《Nature》2011,479(7372):E1-2; author reply E2-4
The resemblance of the orbitally filtered isotope signal from the past 340 kyr in Antarctic ice cores to Northern Hemisphere summer insolation intensity has been used to suggest that the northern hemisphere may drive orbital-scale global climate changes. A recent Letter by Laepple et al. suggests that, contrary to this interpretation, this semblance may instead be explained by weighting the orbitally controlled Antarctic seasonal insolation cycle with a static (present-day) estimate of the seasonal cycle of accumulation. We suggest, however, that both time variability in accumulation seasonality and alternative stable seasonality can markedly alter the weighted insolation signal. This indicates that, if the last 340 kyr of Antarctic accumulation has not always looked like the estimate of precipitation and accumulation seasonality made by Laepple et al., this particular accumulation weighting explanation of the Antarctic orbital-scale isotopic signal might not be robust.  相似文献   

14.
In the context of gradual Cenozoic cooling, the timing of the onset of significant Northern Hemisphere glaciation 2.7 million years ago is consistent with Milankovitch's orbital theory, which posited that ice sheets grow when polar summertime insolation and temperature are low. However, the role of moisture supply in the initiation of large Northern Hemisphere ice sheets has remained unclear. The subarctic Pacific Ocean represents a significant source of water vapour to boreal North America, but it has been largely overlooked in efforts to explain Northern Hemisphere glaciation. Here we present alkenone unsaturation ratios and diatom oxygen isotope ratios from a sediment core in the western subarctic Pacific Ocean, indicating that 2.7 million years ago late-summer sea surface temperatures in this ocean region rose in response to an increase in stratification. At the same time, winter sea surface temperatures cooled, winter floating ice became more abundant and global climate descended into glacial conditions. We suggest that the observed summer warming extended into the autumn, providing water vapour to northern North America, where it precipitated and accumulated as snow, and thus allowed the initiation of Northern Hemisphere glaciation.  相似文献   

15.
The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate. Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales, which would have led to corresponding changes in the seasonal temperature cycle. Here we present seasonally resolved proxy records using corals from the northernmost Red Sea, which record climate during the last interglacial period, the late Holocene epoch and the present. We find an increased seasonality in the temperature recorded in the last interglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation, a climate oscillation that strongly influences winter temperatures and precipitation in the North Atlantic region. From our coral records and simulations with a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index state of the North Atlantic Oscillation during the last interglacial period, which is consistent with European proxy records, contributed to the larger amplitude of the seasonal cycle in the Middle East.  相似文献   

16.
^230Th ages and oxygen isotope data of a stalagmite from Shanbao Cave in Hubei Province characterize the East Asian Monsoon precipitation from 133 to 127ka. The decadal-scale high-resolution δ^18O record reveals a detailed transitional process from the Penultimate Glaciation to the Last Interglaciation. As established with ^230Th dates, the age of the Termination Ⅱ is determined to be 129.5±1.0 kaBP, which supports the Northern Hemisphere insolation as the triggers for the ice-age cycles. In our δ^18O record, the glacial/interglacial fluctuation reaches about 4‰, almost the same level as in other Asian Monsoon cave stalagmite δ^18O records. The transition of the glacial/interglacial period in our record can be recognized as four stepwise stages, among which, a rapid rise of monsoon precipitation follows the stage of “Termination Ⅱ pause”. The rapid rise is synchronous with the abrupt change of global methane concentration, which reflects that an increase in both Asian Monsoon precipitation and tropical wetland plays an important role in the global climate changes.  相似文献   

17.
Cuffey KM  Vimeux F 《Nature》2001,412(6846):523-527
Ice-core measurements of carbon dioxide and the deuterium palaeothermometer reveal significant covariation of temperature and atmospheric CO2 concentrations throughout the climate cycles of the past ice ages. This covariation provides compelling evidence that CO2 is an important forcing factor for climate. But this interpretation is challenged by some substantial mismatches of the CO2 and deuterium records, especially during the onset of the last glaciation, about 120 kyr ago. Here we incorporate measurements of deuterium excess from Vostok in the temperature reconstruction and show that much of the mismatch is an artefact caused by variations of climate in the water vapour source regions. Using a model that corrects for this effect, we derive a new estimate for the covariation of CO2 and temperature, of r2 = 0.89 for the past 150 kyr and r2 = 0.84 for the period 350-150 kyr ago. Given the complexity of the biogeochemical systems involved, this close relationship strongly supports the importance of carbon dioxide as a forcing factor of climate. Our results also suggest that the mechanisms responsible for the drawdown of CO2 may be more responsive to temperature than previously thought.  相似文献   

18.
The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.  相似文献   

19.
Edgar KM  Wilson PA  Sexton PF  Suganuma Y 《Nature》2007,448(7156):908-911
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres approximately 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.  相似文献   

20.
Between 34 and 15 million years (Myr) ago, when planetary temperatures were 3-4 degrees C warmer than at present and atmospheric CO2 concentrations were twice as high as today, the Antarctic ice sheets may have been unstable. Oxygen isotope records from deep-sea sediment cores suggest that during this time fluctuations in global temperatures and high-latitude continental ice volumes were influenced by orbital cycles. But it has hitherto not been possible to calibrate the inferred changes in ice volume with direct evidence for oscillations of the Antarctic ice sheets. Here we present sediment data from shallow marine cores in the western Ross Sea that exhibit well dated cyclic variations, and which link the extent of the East Antarctic ice sheet directly to orbital cycles during the Oligocene/Miocene transition (24.1-23.7 Myr ago). Three rapidly deposited glacimarine sequences are constrained to a period of less than 450 kyr by our age model, suggesting that orbital influences at the frequencies of obliquity (40 kyr) and eccentricity (125 kyr) controlled the oscillations of the ice margin at that time. An erosional hiatus covering 250 kyr provides direct evidence for a major episode of global cooling and ice-sheet expansion about 23.7 Myr ago, which had previously been inferred from oxygen isotope data (Mi1 event).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号