首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于分布式驱动电动汽车,提出了一种纵向车速非线性自适应估计算法.该算法使用车辆加速度传感器信息和各车轮滑移率反馈值对车辆纵向车速进行估计.从理论上证明了纵向速度估计误差收敛.根据各车轮滑移率的大小确定各轮速估计误差在估计算法中的反馈修正比例.使用带遗忘因子的递推最小二乘算法在坡道路面对路面坡度进行了在线实时估计,进而使用坡度估计值修正纵向加速度传感器信息,实现了坡度自适应纵向车速估计.该方法具有计算量小、估计精度高的优点.通过多工况的实车试验验证了算法的有效性.  相似文献   

2.
以精确估计车辆状态参数为目标,提出了一种基于自适应无迹卡尔曼滤波的车辆状态参数估计算法,采用非线性三自由度车辆模型,将模糊控制与无迹卡尔曼滤波算法相结合,实现对系统测量噪声的自适应调整,通过对方向盘转角,纵向加速度和横向加速度等低成本传感器信息融合实现对质心侧偏角和横摆角速度的状态估计.应用CarSim与Matlab/Simulink建立分布式驱动电动汽车整车模型并且联合仿真对估计算法的有效性进行验证.结果表明自适应无迹卡尔曼滤波比无迹卡尔曼滤波更能有效准确地进行车辆状态参数估计,在双移线工况中,质心侧偏角估计精度提高了6.7%,横摆角速度估计精度提高了4.8%.   相似文献   

3.
分布式驱动电动汽车主要结构特征是将驱动电机直接安装在驱动轮内或者驱动轮附近,具有驱动传动链短、传动效率高、结构紧凑等突出优点。电动机即是汽车信息单元,同样也是快速反应的控制执行单元,通过独立控制电动机驱/制动转矩容易实现多种动力学控制功能。本文引入了一种分布式驱动汽车的分类方法,系统介绍分布式驱动系统的架构、性能指标.  相似文献   

4.
为了提高分布式驱动微型电动汽车的动力性和操纵稳定性,设计了集成电子差速、驱动防滑和横摆力矩修正等功能的微型电动汽车驱动控制策略.基于改进阿克曼汽车转弯模型设计了电子差速控制算法,基于汽车转弯驱动轮滑转率修正算法和模糊PID(proportion integration differentiation)控制方法设计了汽车驱动防滑控制器,并针对汽车转弯时容易发生侧滑失稳,进行了基于PID控制方法的汽车横摆力矩修正.最后基于Simulink和Carsim软件建立了联合仿真模型,进行了以驱动轮转矩为控制量的低附着路面典型工况仿真实验.实验结果表明,采用分布式驱动微型电动汽车驱动集成控制算法能够有效地提高汽车的动力性和操纵稳定性.  相似文献   

5.
为了更精确地获取分布式电动汽车行驶过程中的关键参数及相关状态信息,本文提出了一种递推最小二乘法与双容积卡尔曼滤波算法相结合的估计方法,并基于三自由度非线性整车动力学模型,借助Carsim-MATLAB/Simulink平台进行了联合仿真与实验分析,结果表明,该算法能实时准确地估计车辆参数与行驶状态,满足车辆主动安全控制...  相似文献   

6.
中国科协第390次青年科学家论坛——分布式驱动电动汽车关键技术与产业化前景于2019年11月29—30日在北京举行。此次论坛由中国机械工程学会承办,《机械工程学报》编辑部JME学院和北京理工大学电动车辆国家工程实验室协办。本文为论坛主席及5位执行主席根据研讨情况,对分布式驱动电动汽车关键技术及产业化趋势和方向进行的预判。  相似文献   

7.
为使分布式驱动电动汽车在不同工况下能够保持直线行驶,摒弃传统的单一控制变量和单一控制模式的方法. 基于CarSim和Matlab/Simulink联合仿真平台,针对车辆在不同工况下的受力特点和不同控制方法的控制特点,提出双模式控制策略. 即在车辆行驶速度较低且侧向风速度较小时,采用带有加权比重的侧向位移和横摆角联合控制的终端滑模变结构控制模式;在车速较高且侧向风速度较大时,利用模糊控制对无法建立精确数学模型的系统具有很好控制效果的特点,对横摆角采用模糊控制模式. 研究结果表明,车辆在低速行驶和高速行驶,有侧向风和无侧向风的情况下,均能很好地维持直线行驶. 该控制策略比传统的单变量侧向位移终端滑模控制和单变量横摆角终端滑模控制的效果都要好,精度更高,大大地提高了车辆的行驶安全性.  相似文献   

8.
提出一种分布式驱动电动汽车行驶稳定性分层控制策略. 策略分为基于滑模控制的广义力矩计算层、基于二次规划的滑移率决策层和基于ABS/ASR的滑移率追踪层. 搭建包括双电机独立驱动系统在内的硬件在环仿真平台,进行了分布式驱动电动汽车典型行驶工况的仿真. 与传统车辆稳定性控制策略的对比发现,文中提出的策略能够在对纵向车速影响较小的前提下,提高车辆操纵稳定性,在部分执行器失效时仍能确保车辆的行驶安全.   相似文献   

9.
分布式驱动电动汽车操纵性改善控制策略设计   总被引:2,自引:0,他引:2  
根据分布式电动汽车各轮驱动/制动转矩独立精确可控的特点,设计了一种改善车辆操纵性能的控制策略.根据不同车速下理想的助力特性曲线设计了差动助力转向控制策略以改善转向轻便性,根据优化的横摆角速度参考模型设计了转矩矢量分配控制策略以改善操纵灵敏性,最后利用纵向力分配算法将两者结合形成差动助力转向/转矩矢量分配联合控制策略.实车试验结果表明,操纵性改善控制策略在保证驾驶员路感信息的前提下明显减小了转向盘转矩,减小了转向盘转角,降低了驾驶员操纵负担.明显提高了整车横摆角速度响应,有效地抑制了车辆的加速不足转向特性,显著地改善了分布式驱动电动汽车的操纵性能.  相似文献   

10.
基于分布式驱动电动汽车具有各轮转矩可单独控制的特点,利用最优转矩分配方法提出其在危险工况下的稳定性控制算法.该算法分为稳定性判断与横摆力矩控制模块、滑移率计算与控制模块及各轮驱动力矩分配模块.稳定性判断与横摆力矩控制模块确定车辆稳定性状态,滑模变结构控制方法用于跟踪理想横摆角速度,输出期望的横摆力矩,确保非线性系统在受到外界干扰时保持稳定;滑移率计算与控制模块计算各轮的滑移状态,通过滑模变结构控制的方法进行各轮滑移率的控制;驱动力矩分配模块综合考虑轮胎力、地面附着等因素,根据横摆控制和滑移率控制的需求,分配各轮驱动力矩.利用联合仿真进行工况验证,结果表明:与各轮力矩平均分配算法相比,所提的力矩分配算法具有更优良的稳定控制效果.  相似文献   

11.
针对分布式驱动电动汽车各车轮电机力矩和液压制动力矩可独立控制的特点,以操纵稳定性为目标,设计电机与液压制动复合分配的控制策略.控制策略采用分层控制的结构,上层运动控制器根据驾驶员输入和车辆状态的反馈求取广义力,下层控制分配器在执行器约束及速度约束下,考虑轮胎纵侧耦合特性对横摆转矩的影响,采用二次规划法进行转矩分配,实现车辆的稳定性控制效果.最后利用CARSIM和MATLAB软件对电液复合算法进行了联合仿真,并进行了实车试验来验证算法,最终的仿真和试验结果表明复合分配控制策略的控制效果相对仅用电机控制时要好,提高了车辆的稳定性控制效果.  相似文献   

12.
针对车辆动力学系统状态估计的非线性问题,引入非线性动态Dugoff轮胎模型来构建包括纵向、侧向、横摆和侧倾等8自由度的非线性车辆动力学状态估计系统.在融合车载多传感器信息的基础上设计了车辆动力学的平方根容积卡尔曼非线性滤波状态观测器,对质心侧偏角、轮胎侧向力等关键状态进行观测.在Matlab/Simulink环境中搭建了Simulink-Carsim分布式驱动电动汽车系统状态估计联合仿真平台,采用双移线工况对观测器的可行性和有效性进行仿真验证.结果表明:传统的扩展式卡尔曼滤波状态观测器在车辆经历高侧向加速度过程中的观测值大幅偏离车辆运行状态的真实值,而设计的平方根容积卡尔曼非线性滤波状态观测器在整个双移线仿真工况下观测结果平稳,能实时反映车辆动力学系统的真实非线性运行状态,具有更小的观测误差和更高的观测精度.  相似文献   

13.
质心侧偏角估计是汽车稳定性控制系统中的关键技术.为了解决现有估计方法对轮毂驱动电动汽车信息利用不充分、估计精度低的问题,提出一种基于遗传粒子滤波(GPF)的轮毂驱动电动汽车质心侧偏角估计方法.利用魔术轮胎公式,融合轮毂驱动电动汽车车轮上驱动与制动力矩信息,建立非线性车辆动力学模型,实现轮胎纵向力与侧向力计算,完成质心侧偏角估计器的搭建.针对车辆动力学模型的强非线性及传统粒子滤波算法粒子退化、计算量大的问题,设计适用于强非线性系统并且能够有效抑制退化、减小计算量的遗传粒子滤波算法对质心侧偏角进行估计.仿真结果表明:所提出的估计方法能够提高质心侧偏角的估计精度和鲁棒性.  相似文献   

14.
依据分布式电动汽车用电机需调速性能好、抗干扰能力强、可靠性高的特点,从工程应用出发,设计了一种基于DSP(TMS320F2812)为主控芯片的电动汽车用无刷直流电机控制器。阐述了控制器硬件电路重要模块的工作原理及可靠性设计,开展了电机控制器硬件系统功能检验的实车实验。结果表明该电机控制器有良好的动态特性且运行可靠,稳定性强。  相似文献   

15.
为了提高控制策略鲁棒性和驱动电机效率,首先建立了分布式驱动电动汽车七自由度动力学模型,然后基于鲁棒控制理论,设计了基于状态观测的H∞车辆稳定性控制器。借助分布式驱动电动汽车每个车轮均能独立控制的特点,将差动制动与差动驱动相结合,提出了基于直接横摆力矩的转矩分配控制策略。通过变道典型工况进行了数值仿真,结果表明,所提出的基于转矩分配的横向稳定性控制策略能很好地改善车辆横向稳定性,且能减小车轮输出转矩,将车轮滑移率控制在较低范围内。  相似文献   

16.
针对前轴集中电机驱动、后轴轮毂电机驱动的分布式驱动汽车,设计了再生制动策略(策略1)。根据再生制动时的动力传动过程提出了发电系统总效率的概念,并根据其最高得到最优的前后电机力分配系数,在欧洲经济委员会(ECE)法规的约束下,设计了再生制动经济性优化策略(策略2)。考虑到装备了防抱死制动系统(ABS)的车辆在制动强度较小时可优先使用后轴电机进行再生制动,提出了低制动强度下的经济性优化策略,以充分利用发电系统的高效区(策略3)。分析并说明了所提出的策略对制动感觉的影响不大。仿真结果表明,三种策略的能量消耗分别减少14.05%,15.04%和16.64%。  相似文献   

17.
提出一种分布式驱动电动汽车操纵稳定性控制策略.该策略采用分层控制的结构,上层为广义力计算层,设计基于前轮转角的前馈控制,提高横摆角速度稳态增益,同时考虑外界扰动和建模不确定性,设计积分抗饱和滑模变结构控制算法跟踪参考横摆角速度,提高车辆瞬态响应.下层为广义力分配层,考虑到实际行驶状况的复杂以及路面状况、车辆质心侧偏角难以实时获取,设计基于稳定性优先的规则分配机制.实车试验结果表明,该控制策略能有效提高车辆的操纵稳定性.  相似文献   

18.
建立三自由度车辆模型与轮胎模型,提出电驱动轮模型并将其应用到纵向力估计中,基于自适应高阶滑模观测器实现轮胎纵向力的估计,利用纵向力观测器(longitudinal force observer, LFO)输出值作为已知输入,结合信息融合滤波(information fusion filter, IFF)算法提出一种车辆状态级联估计方法。进行仿真实验、台架实验以及实车道路实验。研究结果表明:设计的纵向力观测器具有较高的纵向力估计精度,基于信息融合滤波的车辆状态估计方法能够实时跟踪车辆状态且估计性能优于扩展卡尔曼滤波(extended Kalman filter, EKF)。  相似文献   

19.
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.  相似文献   

20.
通过分析纯电动汽车驱动系统电动机、传动装置和动力电池各参数间的相互联系,提出一种选型匹配方法。基于此匹配方法,在Visual C++6.0平台上开发了选型软件,实现了选型自动化。将可视化界面引入到软件中,方便用户进行微调,使各项参数达到整车性能要求,提升设计效率。以纯电动汽车比亚迪e6为例,进行了符合整车性能要求的驱动系统设计,设计结果与实车参数一致,说明了设计方法和设计软件的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号