首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
周景雷 《菏泽学院学报》2011,33(2):40-42,88
针对不确定性机器人的跟踪控制问题,设计出了基于反步法的控制器。该方法首先将机器人动力学模型通过线性反馈得到了两个子系统,然后对每个子系统分别构造李雅普诺夫函数来保证渐近稳定,从而达到了对机器人系统跟踪误差渐近稳定控制的目的.最后以两关节机器人为例进行仿真,仿真结果表明基于反步法的控制器是有效的.  相似文献   

2.
针对SCARA机器人轨迹跟踪问题,提出了一种基于反步法的轨迹跟踪控制方法。利用反步法设计控制器的虚拟控制和实际控制量,基于李雅普诺夫稳定理论设计的控制律能够实现对机器人的轨迹跟踪,并确保闭环系统为全局稳定。仿真结果验证了算法的有效性,所设计的跟踪闭环系统一致全局渐近稳定,有效提高了轨迹跟踪控制精度,保证了跟踪误差信号的收敛。  相似文献   

3.
针对具有不确定性的机器人系统,提出一种自适应神经全局滑模轨迹跟踪控制方案.控制器采用一种新的全局滑模面,使得系统在整个响应时间内都具有鲁棒性;并基于径向基函数神经网络自适应学习不确定性的未知上界,从而自适应调整控制律的切换增益.而且基于Lyapunov稳定性理论证明这种新型控制器能够保证机器人系统关节角位置矢量和角速度矢量的跟踪误差渐近收敛于0.仿真结果表明提出的控制策略能够使机器人系统仅在0.5 s内就实现快速的轨迹跟踪,可见该方案是可行且有效的.  相似文献   

4.
非完整轮式移动机器人轨迹跟踪控制研究   总被引:29,自引:0,他引:29  
根据机器人的运动学模型 ,对具有非完整特性的移动机器人轨迹跟踪控制进行了研究 .采用基于积分backstepping时变状态反馈方法 ,引入具有双曲正切特性的虚拟反馈量 ,设计机器人轨迹跟踪控制算法 ,并且利用Lyapunov方法证明系统的全局稳定性 .考虑到机器人的动力学约束 ,控制律中引入机器人系统速度、加速度受限策略以保证机器人运动平滑 .仿真证明该算法具有快速、精确、全局稳定的良好特性  相似文献   

5.
提出了一种机器人柔顺性控制算法 ,在未知机器人精确数学模型的情况下 ,通过构建一个ANN二阶逆系统 ,并级联ANN与机械手 ,实现机器人位置系统的线性解耦 .在此基础上 ,针对已解耦位置系统 ,通过本文提出的基于目标阻抗的控制算法调节机器人手臂的阻抗 ,从而实现机器人的柔顺性控制 .还介绍了机器人柔顺性控制实验平台的建立与组成 .基于两杆操作手的实验结果证明该方法具有良好的解耦和位置跟踪性能 ,仿真结果表明本方法可实现有效的柔顺性控制 .  相似文献   

6.
时延下遥微操作机器人系统滑模变结构控制研究   总被引:1,自引:0,他引:1  
针对遥微操作机器人系统在实际远程手术应用中存在时延而易导致系统不稳定且难以控制的问题,通过系统动力学建模和时延下系统理想性能的定义,设计了一种保持系统稳定和良好操作性能的新型控制方案.在该方案中主机械手采用基于期望特性的阻抗控制而从机械手采用基于指数趋近律的滑模变结构控制策略.仿真实验结果表明了该方案的有效性和鲁棒性,系统能在时延下较好地实现位置比例跟踪和力比例跟踪.  相似文献   

7.
提出了一种基于SR-UKF的主动状态建模方法用于移动机器人的在线故障检测和容错跟踪控制.通过对履带式机器人常见滑动故障的运动学分析,建立了带未知滑动故障参数的机器人运动学模型,并采用SR-UKF非线性滤波方法来联合估计机器人的位姿和滑动参数,在对机器人进行实时定位的同时实现了对快速变化(或突变)的滑动故障的在线跟踪和检测.在此基础上,将估计得到的自适应参数模型与基于Lyapunov分析的反馈控制律设计方法结合,获得了一致渐近稳定的轨迹跟踪控制结果,实现了针对在线故障自适应模型的容错控制重构.针对典型的阶跃式滑动故障参数变化的轨迹跟踪仿真实验表明了该方法的有效性.  相似文献   

8.
针对3-PPSR并联机器人加入大长径比柔性铰链和与外界环境接触产生形变的问题,在控制端提出了基于位置阻抗控制的主动柔顺控制策略。该方法在柔性并联机器人与外界环境对象的等效作用模型和基于位置的阻抗控制模型基础上,引入外界环境作用力和结合系统的力跟踪模型,通过调整初始参考位置控制模型的稳态误差实现基于位置的外力跟踪控制。采用Lyapunov稳定模型和能量方程,在未知环境变量条件下通过力偏差直接控制目标位置的自适应控制系统实现自适应的力控制。实验结果表明,基于位置的外力控制精度可以达到±0.05N,应用自适应控制精度可以达到±0.1N,3-PPSR柔性并联机器人的末端的接触力控制精度得到了提高,满足设计要求,验证了该控制方法的准确性和有效性。  相似文献   

9.
提出一种递阶虚拟结构编队控制方法,将机器人编队按空间分布划分为簇,并定义某段时间内该簇(虚拟结构)的参考轨迹,将虚拟结构的运动转化为各机器人的期望轨迹,然后基于反步思想,并通过设计移动机器人误差跟踪系统的Lyapunov函数来设计动态反馈控制器,实现了对参考轨迹的全局渐近跟踪.最后通过对给定直线和圆轨迹的编队跟踪试验,验证了该控制策略的有效性.  相似文献   

10.
针对一类带有不确定性的互联机器人系统,利用Lyapunov方法,设计了一个非线性鲁棒跟踪控制器.这个控制器能够保证被控互联机器人系统的位置向量与速度向量渐近地跟踪已知的轨迹.最后的仿真结果表明了该控制方法的有效性.  相似文献   

11.
针对不确定性存在情况下的机器人轨迹跟踪 ,提出了一种鲁棒自适应轨迹控制算法 .控制算法是全局按指数收敛的 ,不需要知道机器人动力学模型 ,结构简单 ,计算量小 ,能使轨迹误差收敛到一任意小的区域内 .利用Lyapunov直接法分析了控制算法的稳定性和鲁棒性 .两关节直接驱动机器人的实验研究验证了算法的有效性 .  相似文献   

12.
针对具有参数不确定性的机器人动力学系统,根据滑模控制原理并利用模糊系统的逼近能力,提出了一种自适应模糊滑模控制方案.控制结构中采用模糊系统去自适应补偿过程的不确定性,利用Lyapunov定理证明了闭环模糊控制系统的稳定性和跟踪误差的收敛性.仿真结果表明了所提控制策略的有效性。  相似文献   

13.
利用反演设计,提出一种强化学习自适应神经网络轮式移动机器人(WMR)轨迹跟踪控制方法.首先在极坐标下建立WMR的轨迹跟踪误差模型,并基于此设计运动学控制器.然后,针对WMR动力学系统,设计自适应神经网络控制器.结合强化学习机制,同时对系统未知侧滑、打滑和模型不确定性进行优化补偿,并引入鲁棒控制项来消除补偿误差的影响,进一步提高了控制效果.所提控制方法使得闭环系统稳定,且最终一致有界收敛,其有效性通过数值仿真结果得到了验证.  相似文献   

14.
对一类具有不确定性的非线性系统,根据滑模控制原理,提出了模糊逻辑控制的一种新设计,由于使用了适当的模糊逻辑切换,避免了滑模控制所固有的颤动现象,通过构造李雅为诺夫函数,证明了算法的全局稳定性,且跟踪误差收敛到零的一个领域,仿真结果表明,本文设计的模糊控制,对模型不确定性和外来扰动具有较强的鲁棒性和良好的跟踪性能。  相似文献   

15.
徐源 《科技信息》2011,(27):I0050-I0051
针对存在系统参数不确定和有界外部扰动情况下的轨迹跟踪机器人系统控制问题,本文提出一种基于滑模变结构的鲁棒自适应控制方案。自适应控制律补偿系统参数不确定性,并对不确定性干扰上界进行实时估计;滑模控制消除了自适应律引起的参数误差,并且具有较强的干扰抑制能力。仿真表明此算法具有较高的跟踪精度和较强的鲁棒性。  相似文献   

16.
静止同步补偿器无功电流的鲁棒自适应控制   总被引:3,自引:0,他引:3  
从器件级、装置级和系统级 3个层次讨论电压源型静止同步补偿器 (STATCOM)的数学建模和控制器设计。在装置级层次 ,考虑到关键模型参数——等值电阻未知且系统受不可测量噪声干扰等实际情况 ,提出一种鲁棒型直接自适应控制算法 ,以解决无功电流的追踪控制问题 ;通过构造L yapunov函数并应用相关的稳定性理论严格证明了控制系统的全局稳定性和有界性 ;讨论了控制器设计参数的选择和数字实现问题。数字仿真结果表明 ,所得到的鲁棒自适应无功电流控制器能很好地达到预期控制目标 ,并在追踪能力和鲁棒特性等方面比比例积分 (PI)控制优越  相似文献   

17.
一类非线性系统的鲁棒自适应模糊控制   总被引:1,自引:0,他引:1  
对一类非线性系统,根据模糊自适应控制的设计思想,考虑逼近误差及外扰的影响,提出一种在控制器中增加一个鲁棒自适应控制项的设计方法,并利用Lyapunov理论证明了由此控制的闭环系统的跟踪误差可收敛到零的一个邻域内。采用该方法,无需事先知道逼近误差和外扰的界,从而提高了实际应用价值。  相似文献   

18.
讨论了一类不确定混合线性系统在其Markov跳跃参数所处模态非精确可测得情况下的鲁棒自适应控制问题.基于混合系统模式下的LaSalle稳定性定理,对系统不确定部分的未知范数上界给出了一种参数自适应估计方法并设计了相应的鲁棒自适应控制律,实现了不确定混合线性系统以概率1渐近稳定.设计了仅依赖于跳跃参数的非精确测量值的鲁棒控制律.仿真结果验证了该方案的有效性.  相似文献   

19.
对基于互质稳定因子描述的一类结构未建模动态系统提出一种控制器设计方案.在算法设计过程中采用了变结构控制与自适应控制相结合的方法.文中证明了所提方案能保证系统的全局输出有界稳定,并对系统的动态不确定性具有一定的鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号